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Preface

Functional analysis arose in the early twentieth century and
gradually, conquering one stronghold after another, became a
nearly universal mathematical doctrine, not merely a new area
of mathematics, but a new mathematical world view. Its
appearance was the inevitable consequence of the evolution of
all of nineteenth-century mathematics, in particular classical
analysis and mathematical physics. Its original basis was
formed by Cantor’s theory of sets and linear algebra. Its
existence answered the question of how to state general
principles of a broadly interpreted analysis in a way suitable for
the most diverse situations.
A.M. Vershik ([45], p. 438).

This text evolved from the content of a one semester introductory course in func-
tional analysis that I have taught a number of times since 1996 at the University of
Virginia. My students have included first and second year graduate students prepar-
ing for thesis work in analysis, algebra, or topology, graduate students in various
departments in the School of Engineering and Applied Science, and several under-
graduate mathematics or physics majors. After a first draft of the manuscript was
completed, it was also used for an independent reading course for several under-
graduates preparing for graduate school.

While this book is short, comparatively speaking, it does not accomplish it aims
through brevity. Arguments are generally presented in detail, and in fact I have tried
to firmly keep in mind the reader who may be learning the material on his or her
own without the benefit of a formal course or instructor. Since functional analysis is
a huge field, I have had to make many omissions with regard to the topics I present.
These choices represent, of course, my own preferences, but also my desire to start
with the basics and still travel a path through some significant parts of modern func-
tional analysis.

The prerequisites for this book include undergraduate courses in real analysis,
linear algebra, and basic point set topology (say, in metric spaces). A modicum of
complex analysis is used in a few examples and exercises, and in the proofs of a
few results in Chapter 5; in a pinch it is not an essential prerequisite for a student
willing to bypass those parts (or take them on faith). With respect to real analysis
a good undergraduate level course is essential. Beyond this some familiarity with
measure theory and the Lebesgue integral is desirable, but not essential. Save for
the last chapter, most of the use of measure theory and Lebesgue integration occurs
in limited ways—primarily in examples. An Appendix provides a summary and
expository discussion of all that is needed here. I encourage any prospective reader
who may feel shaky with these desirable but not essential prerequisites not to be
daunted by them. On the basis of my experiences teaching this material I have found
that students with no prior exposure to complex analysis or measure theory and
Lebesgue integration can nevertheless have a successful experience with the topics
presented here.
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viii Preface

I have woven a certain amount of historical commentary into the text; this re-
flects my belief that some understanding of the historical development of any field
in mathematics both deepens and enlivens one’s appreciation of the subject. The
history of functional analysis is filled with interesting characters, many of whom
lived and worked during turbulent times in the twentieth century.

Each chapter concludes with an extensive collection of exercises. The purpose of
the exercises is to enable the reader to become comfortable with the ideas in the text;
to make them his or her own. While most are therefore closely tied to the material
being discussed, an occasional exercise is intended to provide an initial step or steps
towards a topic not discussed in the text, or to point the way for further exploration.
In any case, all are intended to be eminently doable by a student and when advisable
are accompanied by a hint.

I would like to express my great appreciation to several friends and colleagues
who provided advice and encouragement during the writing of this book. Sheldon
Axler, Tom Goebeler, Christopher Hammond, and Bill Ross read substantial por-
tions of the manuscript and provided many helpful comments, as well as suggestions
for exercises. Larry Thomas gave useful feedback on the Appendix. Mark Spencer at
Springer provided valuable editorial assistance. Julie Riddleberger helped with the
illustrations, and patiently answered many TEX questions. I thank Tom Kriete for
his enthusiastic support and encouragement throughout all stages of this work. And
finally I thank the students in the Functional Analysis course I taught at the Univer-
sity of Virginia in each of the last several years. It was their enthusiastic response
to this course that initially got me thinking about writing a functional analysis text,
and helped me refine my ideas of what this text should look like.

Charlottesville, Virginia Barbara D. MacCluer
July 2008
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3.5 Banach and the Scottish Café . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1 Finite-Dimensional Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 A Preliminary Spectral Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 The Invariant Subspace Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5 Introduction to the Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6 The Fredholm Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

ix



x Contents

5 Banach and C∗-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1 First Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Results on Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Ideals and Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4 Commutative Banach Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.5 Weak Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.6 The Gelfand Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.7 The Continuous Functional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.8 Fredholm Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 The Spectral Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.1 Normal Operators Are Multiplication Operators . . . . . . . . . . . . . . . . . 157
6.2 Spectral Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Appendix A: Real Analysis Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.3 Lp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
A.4 The Stone–Weierstrass Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
A.5 Positive Linear Functionals on C(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



Chapter 1
Hilbert Space Preliminaries

It seems to me not useless to indicate interest in a study of sets
composed of functions....
J. Hadamard, International Congress of Mathematicians,
Zũrich, 1897.

Functional analysis developed in the late nineteenth and early twentieth centuries,
during a period in which there was a general interest in abstraction, axiomatization,
and unification across all fields of mathematics. This unification meant that objects
that behaved according to a common set of rules were viewed as “the same,” even
if they consisted of rather different elements. A core idea in functional analysis is
to treat functions as “points” or “elements” in some sort of abstract space, so that
instead of working with individual functions (the tradition in classical analysis), we
deal with functions as points in a space endowed with some kind of overall structure.
The structure of the space itself is emphasized over properties of individual elements
in the space. This viewpoint, accompanied by an axiomatization of the new spaces
to be considered, was an integral step in the process of transferring familiar concepts
in finite-dimensional Euclidean space to (typically infinite-dimensional) “function
spaces.”

While important contributions to the beginnings of functional analysis were made
by individuals of various nationalities, the most readily identifiable schools of work
in the early history of the subject were in France, Italy, and Germany. In France,
one of the notable contributors to the initial development of functional analysis was
Maurice Fréchet, whose 1906 doctoral dissertation is a landmark paper in the sub-
ject. In this work, which was extremely influential in both functional analysis and
point set topology, Fréchet began the study of abstract spaces of functions. In partic-
ular, he defined the notion of a metric space (which he called “(E)” spaces, from the
French “écart” meaning distance), and included a discussion of examples of met-
ric spaces where the points in the space were functions. In Fréchet’s work one can
clearly see the influence of his advisor Jacques Hadamard. In an address to the Inter-
national Congress of Mathematicians in 1897, Hadamard proposed a study of what
would now be termed set-theoretic topology. A quote from this address introduces
this chapter; his student Fréchet took up the challenge put forth there.

In this chapter we describe the basic kinds of spaces which will interest us, with a
particular emphasis on Hilbert spaces, which are rich in geometric structure. In sim-
plest terms, the idea behind a Hilbert space is to generalize the familiar Euclidean

B.D. MacCluer, Elementary Functional Analysis, DOI 10.1007/978-0-387-85529-5 1, 1
c© Springer Science+Business Media, LLC 2009



2 1 Hilbert Space Preliminaries

spaces R
n or C

n, preserving as much as possible the geometric results in these finite-
dimensional settings.

1.1 Normed Linear Spaces

A modern-seeming, axiomatic, definition of vector spaces goes back to the Italian
mathematician Giuseppe Peano, in 1888. A vector space is an algebraic object; to
introduce such analytic notions as convergence or continuity in a vector space we
must provide our vector space with additional structure. This brings us to the con-
cept of a normed linear space, which is a vector space with a norm.

Definition 1.1. Let X be a vector space over either the scalar field R of real numbers
or the scalar field C of complex numbers. Suppose we have a function ‖ · ‖ : X →
[0,∞) such that

(1) ‖x‖ = 0 if and only if x = 0,
(2) ‖x+ y‖ ≤ ‖x‖+‖y‖ for all x,y ∈ X , and
(3) ‖αx‖ = |α|‖x‖ for all scalars α and vectors x.

We call (X ,‖ · ‖) a normed linear space.

Property (2) is called the triangle inequality, and property (3) is referred to as
homogeneity. The reverse triangle inequality,

‖x+ y‖ ≥ |‖x‖−‖y‖|

follows easily from (2); see Exercise 1.1.
We give some examples of normed linear spaces. In these examples we won’t

give the details of the verification that the norm satisfies these defining properties.
This verification is straightforward in some cases, while in others it may already be
known to the reader or will be outlined in an exercise.

Example 1.2. Let X = C
n ≡ {(z1,z2, . . . ,zn) : z j ∈ C} with

‖(z1,z2, . . . ,zn)‖ = (
n

∑
j=1

|z j|2)
1
2 ;

this is called the Euclidean norm. The Euclidean space R
n is similarly defined; in

this case we restrict to real scalars.

Example 1.3. Let X = C
n with ‖(z1,z2, . . . ,zn)‖ = max{|z j| : 1 ≤ j ≤ n}.

Example 1.4. Let Y = [0,1], or more generally any compact Hausdorff space, and
let C(Y ) be the vector space of continuous, complex-valued functions on Y , un-
der pointwise addition and scalar multiplication. Define a norm on C(Y ) by ‖ f‖ =
max{| f (y)| : y ∈ Y}. This (specifically C[a,b], endowed with the metric which de-
fines the distance between functions f and g to be maxa≤x≤b | f (x)−g(x)|), was one
of the important examples that Fréchet put forth in his 1906 dissertation.



1.1 Normed Linear Spaces 3

Example 1.5. Choose a value of p ≥ 1, and let �p = �p(N) denote the set of all
sequences {an}∞

n=1 of complex numbers (indexed by the positive integers N) for
which ∑∞

1 |an|p < ∞. In our notation for a sequence we will often abbreviate {an}∞
n=1

by {an}∞
1 or even just {an}. Define the norm of {an} ∈ �p by

‖{an}‖p ≡
(

∞

∑
1
|an|p

)1/p

.

We can include the choice p = ∞ by modifying this definition in the expected way:

�∞ = {{an}∞
1 : sup

n
|an| < ∞}

and
‖{an}‖∞ = sup

n
|an|.

For p = 1 and p = ∞ the triangle inequality is easily verified; for 1 < p < ∞ it goes
by the name of Minkowski’s inequality, in honor of Hermann Minkowski who first
studied the analogue of this �p-norm on the space R

n.

Example 1.6. We can generalize the last example as follows. Consider a positive
measure space (Y,M,µ), where Y is a set, M is a σ -algebra of subsets of Y , and µ
is a positive measure. Choose 1 ≤ p < ∞, and denote by Lp(Y,µ) the collection of
all equivalence classes of M-measurable functions on Y with∫

Y
| f |pdµ < ∞,

normed by

‖ f‖p =
(∫

Y
| f |pdµ

) 1
p

(the integral in this definition is the Lebesgue integral). Minkowski’s inequality (for
integrals) provides the proof that the norm satisfies the triangle inequality. We also
define L∞(X ,µ) to be all equivalence classes of essentially bounded measurable
functions, normed by ‖ f‖∞ = ess sup | f |, the essential supremum of f . Of particular
interest to us will be the space Lp[0,1] = Lp([0,1],dx) with respect to Lebesgue
measure dx on the real line.

For the reader unfamiliar with the concepts in the preceding example, the Ap-
pendix provides a summary of the relevant definitions and results from real analysis.
The use of the Lebesgue integral in the definition of the Lp spaces is important, and
in writing a history of functional analysis, Jean Dieudonné [10] states

...it is likely that progress in Functional Analysis might have been appreciably slowed down
if the invention of the Lebesgue integral had not appeared, by a happy coincidence, exactly
at the beginning of Hilbert’s work...(pp. 119–120).

replacing, what Dieudonné calls “the horrible and useless so-called Riemann inte-
gral.” In Example 1.6, the particular choice Y = N and µ = counting measure on
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the subsets of N gives the space �p of Example 1.5; see Sections A.2 and A.3 in the
Appendix for more details.

Example 1.7. Fix a sequence {β (n)}∞
n=0 of positive numbers with β (0) = 1 and

lim
n→∞

β (n)1/n ≥ 1. (1.1)

The reason for this last restriction will be made clear shortly, but for right now notice
that defining β (n) = (n + 1)a for some fixed real number a will give an allowable
choice. Define the weighted sequence space �2

β to consist of all sequences {an}∞
0

with
∞

∑
n=0

|an|2β (n)2 < ∞,

where the norm of {an}∞
0 is defined to be

(
∞

∑
n=0

|an|2β (n)2

)1/2

.

From one perspective these weighted sequence spaces can be thought of simply as
L2(X ,M,µ) for X = N0 ≡ {0}∪N, M the collection of all subsets of N0, and µ the
measure that assigns to each point n of N0 the mass β (n)2, so that we have a special
case of the example discussed in Example 1.6. In particular, the general version of
Minkowski’s inequality gives the triangle inequality in �2

β . (See Exercise 1.6 for a
more elementary approach.)

The requirement in Equation (1.1) allows us to offer a second perspective on the
spaces �2

β , and the interplay between the two perspectives endows these examples
with a particular richness. Associate to a sequence {an}∞

0 in �2
β the power series

∑∞
n=0 anzn. The radius of convergence of this series is at least one (see Exercise 1.9),

and thus the series converges to an analytic function on the unit disk D = {z ∈ C :
|z| < 1}. This suggests that we may want to identify �2

β , a space of sequences, with
the vector space

{ f =
∞

∑
0

anzn analytic in D :
∞

∑
0
|an|2β (n)2 < ∞}.

In the latter guise, the space is referred to as a weighted Hardy space and denoted
H2(β ); the case β (n) = 1 for all n gives the Hardy space H2. In the next chapter we
will have the language needed to make precise the properties of this identification,
but for the moment we simply observe that the map sending {an}∞

0 to f = ∑∞
0 anzn

is one-to-one (by uniqueness of power series) and onto H2(β ) by definition, and we
will regard H2(β ) as normed so that this mapping preserves norms.

Example 1.8. Let Ω be a nonempty open set in C. Denote the collection of all
bounded analytic functions on Ω by H∞(Ω), and introduce a norm on H∞(Ω) by
‖ f‖ = sup{| f (z)| : z ∈ Ω}.
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The norms in Examples 1.3, 1.4, 1.8, and the �∞ norm in Example 1.5, are all
referred to as the “supremum norm,” and when needed for clarity will be written as
‖ ·‖∞. The L∞ norm in Example 1.6 is called the essential supremum norm; it is also
written ‖ · ‖∞.

Definition 1.9. A metric space is a set X with a function d(·, ·) : X ×X → [0,∞)
satisfying, for x,y, and z in X ,

(1) d(x,y) = 0 if and only if x = y,
(2) d(x,y) = d(y,x), and
(3) d(x,y)+d(y,z) ≥ d(x,z).

The third property is referred to as the triangle inequality.

On any metric space (X ,d) there is an associated topology. The open balls are
the sets of the form B(a,r) ≡ {x : d(x,a) < r}, where r > 0. Every open set is the
union of some collection of open balls. It is easy to see that if X is a normed linear
space, we may define a metric on X by defining d(x,y) = ‖x− y‖. With the metric
topology in place on X , continuity of certain basic mappings can be addressed. For
example, it is easy to check that the function ‖ · ‖ : X → [0,∞) is continuous; see
Exercise 1.8 for this and other elementary results.

About eight years after Fréchet’s seminal work in 1906, Felix Hausdorff wrote a
text that presented a thoroughly modern definition of metric space and defined the
fundamental idea of a Cauchy sequence, which we recall next.

Definition 1.10. Let X be a metric space. A sequence {xn} in X is said to be a
Cauchy sequence if it has the following property: Given any ε > 0 there exists N
such that if n,m ≥ N, then d(xn,xm) < ε .

Definition 1.11. A metric space is said to be complete if every Cauchy sequence in
X converges in X .

Definition 1.12. Let X be a normed linear space. If X is complete in the metric d
defined from the norm by d(x,y) = ‖x− y‖, we call X a Banach space.

All of the above examples of normed linear spaces are Banach spaces. We will
not stop to prove this now, but we do make a couple of observations. The statement
that the space Lp(Y,µ) is complete for any 1 ≤ p ≤ ∞ and any positive measure
space (Y,µ) goes by the name of the Riesz–Fischer theorem. In its full general-
ity it is a deep result of real analysis (see also the discussion in Section 1.5 below
and in Section A.3 of the Appendix). Notice that this general class of examples
includes the �p spaces and weighted sequences spaces as special cases (see Exer-
cise 1.6 for a more elementary approach), as well as the finite-dimensional spaces
in Examples 1.2 and 1.3. In Exercise 1.2 the reader is asked to provide a proof of
completeness for the spaces in Example 1.4, and a similar argument can be used for
the space H∞(Ω) of Example 1.8. You can get an example of a normed linear space
which is not a Banach space by taking a nonclosed subspace of a Banach space; see
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for example Exercise 1.3. (A subspace of a vector space V is a subset of V which is
itself a vector space under the same addition and scalar multiplication operations.)

Banach spaces are named in honor of the Polish mathematician Stefan Banach,
a dominating figure in the birth of functional analysis, who wrote a fundamentally
important book called Opérations Linéaires in 1932. In this book (which had its
beginnings in Banach’s 1920 doctoral thesis) many of the properties of complete
normed linear spaces are developed. Banach calls these spaces “spaces of type (B),”
perhaps in the hope they would eventually be known as “Banach spaces”1 This is
precisely what happened, with the terminology “Banach space” making its formal
appearance in Fréchet’s text Les Espaces Abstraits [13].

Hugo Steinhaus, Banach’s teacher and collaborator, writes in a 1963 memoir of
Banach that Banach’s axiomatic definition of a complete normed linear space pro-
vided precisely the right level of generality; broad enough to encompass a wide
variety of natural examples, but not so general as to permit only uninteresting theo-
rems:

His foreign competitors in the theory of linear operations either dealt with spaces that were
too general, and that is why they either obtained only trivial results, or assumed too much
about those spaces, which restricted the extent of the applications to a few and artificial
examples — Banach’s genius reveals itself in finding the golden mean. This ability of hitting
the mark proves that Banach was born a high class mathematician ([44], p. 12).

In fact, a few months after Banach set down the axioms for a normed linear space,
the American Norbert Wiener independently gave nearly the same definition, and
for a short while the terminology “Banach–Wiener spaces” was used. However, as
Wiener’s interest in the area did not continue, these spaces, in Wiener’s words, be-
came “quite justly named after Banach alone ([46], p. 60).”

Hilbert spaces, which we turn to now, are Banach spaces with some additional
structure, coming from the presence of an inner product.

Definition 1.13. Let X be a vector space over C. An inner product is a map 〈·, ·〉 :
X ×X → C satisfying, for x,y, and z in X and scalars α ∈ C,

(1) 〈x,y〉 = 〈y,x〉 for all x,y in X ,
(2) 〈x,x〉 ≥ 0, with 〈x,x〉 = 0 (if and) only if x = 0,
(3) 〈x+ y,z〉 = 〈x,z〉+ 〈y,z〉, and
(4) 〈αx,y〉 = α〈x,y〉.

Some comments on this definition are in order. The bar in (1) denotes complex
conjugation. Property (2) is referred to as “positive-definiteness,” and the adjective
“Hermitian” is used for property (1). The parenthetical “if” statement in (2) need
not be included in the definition, as it follows from the other parts since 〈0,0〉 =
〈2 ·0,0〉 = 2〈0,0〉. An inner product is linear in the first slot and conjugate linear in

1 Though this interpretation of Banach’s choice of notation is widely repeated, V.D. Milman, in
writing about Banach, says, “In his book...Banach denotes operators by the letter A. These were
the initial objects of study, and the complete normed spaces on which they operated were denoted
by the Latin letter B. That was natural, and there is no indication that he was ‘hinting’ at his own
name by using that letter” ([32], p. 228).



1.1 Normed Linear Spaces 7

the second (〈x,αy+z〉= α〈x,y〉+〈x,z〉), so the defining properties are encapsulated
by saying that an inner product is a Hermitian, positive definite, sesquilinear form
(sesquilinear from the Latin for “1 1

2 ” linear). The reader is cautioned that some
authors (in physics, for example) define the inner product to be linear in the second
slot, and conjugate linear in the first.

A standard example is to define an inner product on L2(X ,µ) for a positive mea-
sure space (X ,µ) by

〈 f ,g〉 =
∫

X
f g dµ .

This general framework includes, as special cases, the example C
n with

〈(z1,z2, . . . ,zn),(w1,w2, . . . ,wn)〉 =
n

∑
j=1

z jw j,

the example �2 of all square summable sequences with

〈(z1,z2, . . .),(w1,w2, . . .)〉 =
∞

∑
j=1

z jw j,

and the weighted analogues �2
β with

〈(z0,z1, . . .),(w0,w1, . . .)〉 =
∞

∑
j=0

z jw jβ ( j)2.

The first two are obtained by taking X to be, respectively, {1,2, . . . ,n} or N, with µ
equal to counting measure. In the case of weighted sequence spaces, X = N0 and µ
assigns mass β (n)2 to the set {n}.

Any inner product satisfies an important inequality, called the Cauchy–Schwarz
inequality, which we describe next.

Proposition 1.14. If 〈·, ·〉 is an inner product on a vector space X, then for all x and
y in X we have

|〈x,y〉|2 ≤ 〈x,x〉〈y,y〉.

In this general form, the Cauchy–Schwarz inequality is due to John von Neumann
(1930), who is often credited with the “axiomatization” of Hilbert spaces (defined
below). Earlier versions of Proposition 1.14, for specific settings, go back to Cauchy,
Bunyakowsky, and Schwarz, and the Cauchy–Schwarz inequality is sometimes re-
ferred to as the Cauchy–Bunyakowsky–Schwarz inequality.

One particularly simple proof of Proposition 1.14 is outlined in Exercise 1.7. As
an important application of Proposition 1.14, we show next how any inner product
defines a norm.

Proposition 1.15. If 〈·, ·〉 is an inner product on a vector space X, then

‖x‖ ≡ 〈x,x〉 1
2
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is a norm on X.

Proof. We will check the triangle inequality, and leave the verification of the other
norm properties to the reader. Using the linearity of the inner product we have

‖x+ y‖2 = 〈x+ y,x+ y〉 = 〈x,x〉+ 〈y,x〉+ 〈x,y〉+ 〈y,y〉
= ‖x‖2 +2Re〈x,y〉+‖y‖2

≤ ‖x‖2 +2|〈x,y〉|+‖y‖2

≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2

= (‖x‖+‖y‖)2

where Re z denotes the real part of a complex number z, and we have used the
Cauchy–Schwarz inequality in the penultimate step. ��
Definition 1.16. A (complex) Hilbert space H is a vector space over C with an
inner product such that H is complete in the metric

d(x,y) = ‖x− y‖ = 〈x− y,x− y〉 1
2 .

Any space L2(X ,µ) as described above is thus an example of a Hilbert space,
since we have already observed that L2(X ,µ) is a Banach space under the norm
‖ f‖2 = (

∫
X | f |2dµ)

1
2 which we recognize as 〈 f , f 〉 1

2 .
There are various anecdotes, of dubious validity, about David Hilbert and the

terminology “Hilbert space.” Steve Krantz, writing in Mathematical Apocrypha [27]
says

It is said that, late in his life, Hilbert was reading a paper and got stuck at one point. He
went to his colleague in the office next door and queried, “What is a Hilbert space?” (p. 89)

Another version is given by Laurence Young [47]:

When Weyl presented a proof of the Riesz–Fischer theorem in a Göttingen colloquium,
Hilbert went up to the speaker afterward to say,“Weyl, you must just tell me one thing,
whatever is a Hilbert space?” (p. 312)

Next we will look at an important example of a Hilbert space where the vectors
are certain analytic functions on the unit disk D = {z ∈ C : |z| < 1}. This example,
which uses a few basic results from complex analysis, will prove to be particularly
illuminating of several of the fundamental Hilbert space notions.

Example 1.17. The Bergman space L2
a(D) is the vector space, under pointwise op-

erations, of all analytic functions f on D for which
∫

D

| f (z)|2 dA
π

< ∞,

where dA denotes two-dimensional Lebesgue measure (so that dA/π is “normalized
area measure” on the unit disk). Of course, every function in L2

a(D) is (a represen-
tative of) an element of the Hilbert space L2(D,dA/π); we give L2

a(D) the inner
product it inherits from L2(D):
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〈 f ,g〉 =
∫

D

f (z)g(z)
dA
π

.

Our first goal is to check that the Bergman space is a Hilbert space. How much
work must we do? Since we already know that L2(D,dA/π) is a Hilbert space, it
will suffice to verify that L2

a(D) is a closed subspace of L2(D,dA/π). Of course,
“closed” here refers to the topology on L2(D,dA/π); this is the metric topology
induced by the norm. To this end, we need an area mean-value property for analytic
functions.

Proposition 1.18. If f is a analytic function in some closed disk B(a,R), then

f (a) =
1

πR2

∫
B(a,R)

f dA.

Proof. As a consequence of Cauchy’s integral formula we have the mean value
property

f (a) =
1

2π

∫ 2π

0
f (a+ reiθ )dθ

for all 0 < r < R. Multiplying by r and integrating with respect to r we have

∫ R

0
r f (a)dr =

∫ R

0

∫ 2π

0
f (a+ reiθ )r

dθ
2π

dr

or equivalently

f (a)
R2

2
=

1
2π

∫
B(a,R)

f dA

as desired. ��

From this we get a corollary that gives an upper bound on the value of a function
in the Bergman space at a point w ∈ D in terms of the norm of f and the distance
from w to ∂D, the unit circle.

Corollary 1.19. Fix w ∈ D. For every f ∈ L2
a(D) we have

| f (w)| ≤ 1
1−|w| ‖ f‖L2

a(D).

Proof. Let 0 < r < 1−|w| so that the closed disk B(w,r) is contained in D. Using
Proposition 1.18 and Hölder’s inequality we have

| f (w)| =
∣∣∣∣ 1
πr2

∫
B(w,r)

f dA
∣∣∣∣

≤ 1
πr2

∫
B(w,r)

| f | dA

≤ 1
πr2

(∫
B(w,r)

1 dA
)1/2(∫

B(w,r)
| f |2 dA

)1/2
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≤ 1
πr2

√
πr2

√
π
(∫

D

| f |2 dA
π

)1/2

=
1
r
‖ f‖L2

a(D).

This calculation holds for any r < 1−|w|, so letting r increase to 1−|w| yields the
desired conclusion. ��

To show that the Bergman space is a Hilbert space, we will use, in addition
to Corollary 1.19, a result from real analysis that says if a sequence { fn} in
L2(D,dA/π) converges in the L2-norm to a limit f , then some subsequence { fnk}
converges pointwise almost everywhere (dA/π) to f ; see, for example, p. 74 in [40].

Theorem 1.20. The Bergman space L2
a(D) is a Hilbert space.

Proof. As we have discussed, we need only show that L2
a(D) is a closed subspace of

L2(D,dA/π). That L2
a(D) is a subspace is immediate. To see that it is closed, sup-

pose we have a sequence { fn} of functions in L2
a(D) with fn → f in L2(D,dA/π).

Our task is to show that f must be in L2
a(D); that is, that the limit function f is

analytic (or more precisely, has an analytic representative). On the one hand, from
the remark preceding the theorem, we know that convergence of fn to f in the norm
of L2(D,dA/π) implies some subsequence { fnk} converges pointwise almost every-
where (dA/π) to f . On the other hand, by Corollary 1.19 we have, for any closed
disk B(0,r) ⊂ D and all z in this closed disk,

| fn(z)− fm(z)| ≤ 1
1− r

‖ fn − fm‖L2
a(D).

This says that the sequence { fn} is uniformly Cauchy on B(0,r) and, by Morera’s
theorem from complex analysis, fn converges uniformly on B(0,r) to an analytic
function g on B(0,r). This holds for all r < 1 and thus our pointwise limit f must
agree almost everywhere with an analytic function, i.e., we may choose f to be
analytic in L2(D,dA/π). This is precisely the desired conclusion that f is in the
Bergman space L2

a(D). ��

There are Lp, p �= 2, versions of the Bergman space; see Exercise 1.11 for the
definition and some basic properties.

1.2 Orthogonality

A Banach space is a complete normed linear space and a Hilbert space is a complete
inner product space. The presence of an inner product permits the all-important
geometric notion of orthogonality, which says in turn that Hilbert spaces behave in
many ways as generalizations of finite-dimensional Euclidean space, where one can
talk about angles and projections, for example.
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Definition 1.21. Given vectors f ,g in a Hilbert space H , we say that f is orthog-
onal to g, written f ⊥ g, if 〈 f ,g〉 = 0. For sets A and B in H we write A ⊥ B if
〈 f ,g〉 = 0 for all f ∈ A and g ∈ B. Finally, A⊥ is the set of all vectors f ∈ H such
that f ⊥ g for all g in A; for any set A this is always a subspace of H , moreover
since A⊥ = ∩a∈A{a}⊥, A⊥ is a closed subspace by continuity of the inner product
(see Exercise 1.8).

It should be clear that A∩A⊥ = {0}. (Why?)
Some authors use the terminology “linear manifold” for a linear subspace that is

not necessarily closed, and reserve the term “subspace” for a closed linear manifold.
We will not do so, but instead use the adjective “closed” when it applies. An example
of a subspace which is not closed is the set of all sequences in �2 with finitely many
nonzero terms.

The next result, aptly called the Pythagorean theorem, is easily verified by writ-
ing the norm in terms of the inner product and expanding. The details are left to the
reader.

Proposition 1.22. If f1, f2, . . . , fn are pairwise orthogonal vectors in a Hilbert
space, then

‖ f1 + f2 + · · ·+ fn‖2 = ‖ f1‖2 +‖ f2‖2 + · · ·+‖ fn‖2.

In general, for any vectors f and g in a Hilbert space we have

‖ f +g‖2 = ‖ f‖2 +2Re 〈 f ,g〉+‖g‖2

and
‖ f −g‖2 = ‖ f‖2 −2Re 〈 f ,g〉+‖g‖2.

The parallelogram equality is then obtained:

‖ f +g‖2 +‖ f −g‖2 = 2‖ f‖2 +2‖g‖2.

Its name comes from picturing the relationship for vectors in, say, R
2; see Figure

1.1.

�
�
�
�
�
�

�
�
�
�
�
�

f−g

f

f +g

g

��
�
�
�
�
��

FIGURE 1.1: The parallelogram equality

In any inner product space, the inner product can be recovered from the norm:
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〈 f ,g〉 =
1
4
(
‖ f +g‖2 −‖ f −g‖2 + i‖ f + ig‖2 − i‖ f − ig‖2) . (1.2)

This is called the polarization identity, and it is verified by a straightforward calcu-
lation. It can be written, and perhaps more easily remembered, as

〈 f ,g〉 =
1
4

3

∑
k=0

ik ‖ f + ikg‖2.

Perhaps surprisingly, given a normed linear space in which the parallelogram
equality holds, there is an inner product that gives the norm. See Exercise 1.14 for
an outline of how to show this result, which is due to P. Jordan and J. von Neumann.
This exercise gives the best known of many (hundreds!) of ways of characterizing
those normed linear spaces that are in fact inner product spaces. For much more on
this subject, the reader is referred to [1].

1.3 Hilbert Space Geometry

A convex set in a vector space V is a subset S of V with the property that whenever
a,b are in S, so is ta+(1− t)b for any 0 ≤ t ≤ 1. Clearly every subspace is convex,
every ball in a normed linear space is convex, and any translate x + S ≡ {x + s :
s ∈ S} of a convex set S is convex. The next result, which we will refer to as the
nearest point property, is a key step in obtaining our main theorem on Hilbert space
geometry.

Proposition 1.23 (Nearest Point Property). Every nonempty, closed convex set K
in a Hilbert space H contains a unique element of smallest norm. Moreover, given
any h ∈ H , there is a unique k0 in K such that

‖h− k0‖ = dist(h,K) ≡ inf{‖h− k‖ : k ∈ K}.

Proof. We begin with a proof of the first statement. The parallelogram equality says
that for any vectors x,y in H ,

∥∥∥∥x− y
2

∥∥∥∥
2

=
1
2
(‖x‖2 +‖y‖2)−

∥∥∥∥x+ y
2

∥∥∥∥
2

.

If d ≡ inf{‖y‖ : y ∈ K}, then we may find a sequence of vectors {xn} in K with
‖xn‖→ d. Thus for any n,m we have

∥∥∥∥xn − xm

2

∥∥∥∥
2

=
1
2
(‖xn‖2 +‖xm‖2)−

∥∥∥∥xn + xm

2

∥∥∥∥
2

,

where, by convexity, 1
2 xn + 1

2 xm is in K, so that
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2

∥∥∥∥
2

≥ d2.

Thus we have
0 ≤ ‖xn − xm‖2 ≤ 2(‖xn‖2 +‖xm‖2)−4d2.

This tells us that {xn} is a Cauchy sequence, and by completeness it must converge
to some x ∈ H . Since K is closed, x ∈ K. Continuity of the norm says that ‖xn‖ →
‖x‖, so ‖x‖ = d. This gives us the existence part of the first statement.

For uniqueness, suppose ‖z‖ = ‖x‖ = d for some z in K. Consider 1
2 x + 1

2 z ∈ K.
Since we must have ∥∥∥∥x+ z

2

∥∥∥∥≥ d

the parallelogram equality again says

∥∥∥∥x− z
2

∥∥∥∥
2

=
1
2
(‖x‖2 +‖z‖2)−

∥∥∥∥x+ z
2

∥∥∥∥
2

= d2 −
∥∥∥∥x+ z

2

∥∥∥∥
2

≤ 0,

which forces x = z. This completes the proof of the first statement.
The second statement is obtained by translation. To find the unique point in K

closest to a given h in H , first find the unique point x in the convex set K − h of
minimal norm. Its translate x+h is the desired point. ��

The arguments used in this proof are basically those of the Hungarian mathe-
matician Frederic Riesz, another important contributor during the early period of
functional analysis. We will continue to see his name attached to quite a few of the
results discussed in this book.

The nearest point property is quite rigid—it fails to be true if we omit either
the requirement that K be closed or convex, or change “Hilbert space” to “Banach
space” in the statement. The interested reader can provide examples to illustrate this.

We will get a lot of mileage out of the next result, called the projection theorem,
whose proof uses the nearest point property. Our presentation follows that of [40].

Theorem 1.24 (Projection Theorem). Let M be a closed subspace of a Hilbert
space H . There is a unique pair of mappings P : H → M and Q : H → M⊥ such
that x = Px+Qx for all x∈H . Furthermore, P and Q have the following additional
properties:

(a) x ∈ M =⇒ Px = x and Qx = 0.
(b) x ∈ M⊥ =⇒ Px = 0 and Qx = x.
(c) Px is the closest vector in M to x.
(d) Qx is the closest vector in M⊥ to x.
(e) ‖Px‖2 +‖Qx‖2 = ‖x‖2 for all x.
(f) P and Q are linear maps.

Proof. First we define P as follows: For every x ∈ H , let Px be the unique closest
point to x in the (closed convex) set M; here we are using the nearest point property



14 1 Hilbert Space Preliminaries

of Proposition 1.23. Uniqueness says that P is well-defined. Moreover, P : H → M,
and if x ∈ M, Px = x. Define Qx = x−Px so that Q is uniquely defined on H ,
Px+Qx = x for all x, and if x ∈ M, Qx = 0.

We next show that Qx ∈ M⊥ for all x. It suffices to show that 〈x−Px,m〉 = 0 for
all m ∈M. Clearly it is enough to check this for unit vectors in M. Fix m ∈ M,‖m‖=
1. Consider Px +αm ∈ M for α any complex number. Since Px is the closest point
to x in M

‖x− (Px+αm)‖ ≥ ‖x−Px‖.
Writing z = x−Px we have

‖z‖2 + |α|2‖m‖2 −〈αm,z〉−〈z,αm〉 ≥ ‖z‖2.

This is true for all α complex, and choosing α = 〈z,m〉 we see that α = 0. This says

0 = α = 〈z,m〉 = 〈x−Px,m〉,

which verifies the claim and proves that Qx ∈ M⊥ as desired.
If x ∈ M⊥, then x−Qx ∈ M⊥, since M⊥ is a subspace. But also x−Qx = Px ∈ M,

and M ∩M⊥ = {0}, so x ∈ M⊥ implies x = Qx and Px = 0. Furthermore, for any
x ∈ H ,

‖x‖2 = 〈Px+Qx,Px+Qx〉 = ‖Px‖2 +‖Qx‖2,

since Qx ∈ M⊥ and Px ∈ M.
Next we check the linearity of the maps P and Q. Let x,y be arbitrary vectors in

H . We want to show P(x + y) = Px + Py and similarly for Q. Since x = Px + Qx,
y = Py+Qy and x+ y = P(x+ y)+Q(x+ y) we see that

Px+Qx+Py+Qy = P(x+ y)+Q(x+ y)

so that
Qx+Qy−Q(x+ y) = P(x+ y)−Px−Py.

The vector on the left side of the last line lies in M⊥ and the vector on the right side
in M; this forces both to be 0, and we have our desired conclusions. The statements
P(αx) = αPx and Q(αx) = αQx are proved similarly.

There are two remaining parts to the proof. We must show that Qx is the closest
vector in M⊥ to x, and verify the uniqueness statement for P and Q. The first of
these goes as follows: Let x ∈ H , and suppose y ∈ M⊥. Since Qx ∈ M⊥ for all x,

‖x− y‖2 = ‖Px+Qx− y‖2 = ‖Px‖2 +‖Qx− y‖2;

this is clearly minimized if y = Qx. So Qx is the closest vector to x in M⊥.
The uniqueness of P and Q with the specified properties is easy: if P,P′ : H →M

and Q,Q′ : H → M⊥ with Px+Qx = x = P′x+Q′x for all x then Px−P′x = Q′x−
Qx; the common value must be 0 since M∩M⊥ = {0}. ��

Figure 1.2 illustrates the projections P and Q from the projection theorem.
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FIGURE 1.2: The projections P and Q

The linear maps P and Q in the projection theorem are called the orthogonal
projections of H onto M and M⊥, respectively. The notation H = M ⊕ M⊥ is
commonly used to encapsulate the statement of the projection theorem.

We end this section with a simple, but useful, corollary of the projection theorem,
whose proof is left to the reader.

Corollary 1.25. If M is a closed, proper, subspace of H , then there exists a non-
zero vector y in H with y ⊥ M.

As a consequence of this corollary, note that one can show that a closed subspace
M is all of H by showing that there is no nonzero vector y in H with y ⊥ M.

1.4 Linear Functionals

Definition 1.26. If X is a normed linear space over C, a linear functional on X is a
map Λ : X → C satisfying Λ(αx+βy) = αΛ(x)+βΛ(y) for all vectors x and y in
X and all scalars α and β .

Hadamard in 1903, and his student Fréchet in 1904–05, began to investigate the
continuous linear functionals on various function spaces. Hadamard, for example,
described the linear functionals on C[a,b] as having the form

Λ( f ) = lim
n→∞

∫
f (x)Φn(x)dx

for a sequence of continuous functions Φn and, in a letter to Fréchet in 1904, pro-
posed the term “functional” for these “functions of functions.” When the function
space under investigation was a Hilbert space, work done independently by Fréchet
and Riesz gave a particularly pleasant and important characterization of these linear
functionals, as we will soon see. We begin with a definition.
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Definition 1.27. A bounded linear functional on a normed linear space X is a linear
functional Λ : X → C for which there exists a finite constant C satisfying |Λ(x)| ≤
C‖x‖ for all x ∈ X .

Anticipating notation somewhat, we write

‖Λ‖ ≡ sup{|Λ(x)| : ‖x‖ ≤ 1}

and refer to this as the norm of Λ ; it is easy to check that when we give linear struc-
ture to the collection of all bounded linear functionals on any normed linear space
by defining the vector operators of addition and scalar multiplication pointwise, ‖·‖
is indeed a norm on this linear space. More will be said about structure on this
space later. Exercise 1.16 gives several equivalent formulations of ‖Λ‖, which we
will use without comment in what follows. An easy, but fundamental, observation
is that bounded linear functionals are precisely those linear functionals which are
continuous.

Proposition 1.28. If X is a normed linear space, and Λ : X → C is a linear func-
tional, then the following are equivalent:

(a) Λ is continuous.
(b) Λ is continuous at 0.
(c) Λ is bounded.

Proof. The implication (a)⇒(b) is trivial, so we look first at (b)⇒(c). Since Λ(0) =
0 (why?), continuity of Λ at 0 means that given ε > 0 we may find δ > 0 such that
if ‖x‖ ≤ δ , then |Λ(x)| < ε . Choose such a δ to correspond to ε = 1. Given x �= 0,
linearity tells us that

|Λ(x)| =
∣∣∣∣Λ
(
‖x‖
δ

· xδ
‖x‖

)∣∣∣∣≤ ‖x‖
δ

,

which gives the boundedness of Λ with ‖Λ‖ ≤ 1/δ . The result of Exercise 1.16 is
used here. The proof of (c)⇒(a) is left to the reader. ��

In discussing continuity, it is helpful to recall that any map f : X → Y , where X
is a metric space but Y need only be a topological space, is continuous if and only
if given any sequence {xn} in X that converges to a point x0 in X , the sequence
{ f (xn)} converges to f (x0). The “if” direction of this statement need not be true if
X is not a metric space; this issue will be discussed further in Section 5.5.

As a consequence of a somewhat more general result that we will prove later, the
set of all bounded linear functionals on a normed linear space X is itself a Banach
space, under pointwise operations and using the norm just defined. In terminology
proposed by Nicolas Bourbaki 2 in 1938, this is called the dual space of X and

2 Nicolas Bourbaki is the pseudonym of a “secret” society of mathematicians, nearly all French,
formed in 1935. It included among its founding members A. Weil, J. Dieudonné, and H. Cartan.
New members were added over time, and one of its rules was that members were to retire at age
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is denoted X∗. Our immediate goal is to understand the dual space of a Hilbert
space. The next result is called the Riesz representation theorem; it was discovered
independently by Riesz and Fréchet in 1907. As motivation for the statement, ob-
serve that if we fix a vector h0 in a Hilbert space H , then the map Λ(h) ≡ 〈h,h0〉 is
clearly linear on H . The Cauchy–Schwarz inequality shows that Λ is bounded with
‖Λ‖ ≤ ‖h0‖. In fact we have equality, as is easily seen by computing Λ(h0/‖h0‖) if
h0 �= 0. The Riesz representation theorem provides a converse to these observations.

Theorem 1.29. Every bounded linear functional Λ on a Hilbert space H is given
by inner product with a (unique) fixed vector h0 in H : Λ(h) = 〈h,h0〉. Moreover,
the norm of the linear functional Λ is ‖h0‖.

Proof. Suppose Λ is a bounded linear functional on H . If Λ is identically 0, choose
h0 = 0. Otherwise, set

M = ker Λ ≡ {h ∈ H : Λ(h) = 0}.

Since Λ is linear, M is a subspace of H , and since Λ is continuous, M = Λ−1(0)
is closed. Note that M �= H since we are assuming Λ �= 0. Pick a nonzero vector
z ∈ M⊥. By scaling if necessary we may assume Λ(z) = 1. Consider, for arbitrary
h ∈ H , the vector Λ(h)z−h and observe that if we apply Λ to this vector we get 0,
i.e., it lies in M. Since z was chosen to lie in M⊥, this says

Λ(h)z−h ⊥ z

so that for every h ∈ H ,
〈Λ(h)z−h,z〉 = 0.

Rearranging this last line we see that Λ(h) = 〈h,z/‖z‖2〉, which gives the existence
statement with h0 = z/‖z‖2. Uniqueness is immediate, and since we have already
observed that ‖Λ‖ = ‖h0‖, we are done. ��

What does the proof of this result tell you about the relationship between any two
vectors in (ker Λ)⊥ when Λ is a bounded linear functional on H ?

Theorem 1.29 says that a Hilbert space is self-dual, i.e., that H ∗ = H in the
sense that the map sending h0 in H to the bounded linear functional 〈·,h0〉 is an
isometry of H onto its dual space (“isometry” referring to the fact that the norm of
the linear functional induced by h0 is ‖h0‖) . Notice that we’re not asserting linearity
for the identification of h0 with the linear function 〈·,h0〉; why not?

In their 1907 works, Riesz and Fréchet dealt specifically with the Hilbert space
L2[a,b]. Shortly thereafter, Riesz considered the natural generalization of his work
when he investigated the possibility of describing all bounded linear functionals on
Lp[a,b] for 1 ≤ p < ∞, launching the study of Lp spaces as normed linear spaces. In
1909, Riesz identified the set of all bounded linear functionals on Lp[a,b],1≤ p < ∞

50. The society’s original purpose was to create an analysis text, but this quickly expanded into a
project of much bigger scope. A multivolume Éléments de mathématique, now totaling more than
7000 pages and treating many core topics in modern mathematics, has been produced.



18 1 Hilbert Space Preliminaries

with Lq[a,b], where 1/p + 1/q = 1 (when p = 1 we set q = ∞). The analogous
statement for �p came a few years earlier, in work of E. Landau; the reader is asked
to provide a proof in this case in Exercise 1.17. If we leave the realm of Banach
spaces, however, a discussion of bounded linear functionals may become moot. For
example, M.M. Day showed in 1940 that there are no continuous linear functionals
on Lp[0,1] for 0 < p < 1 except the trivial functional (which is identically zero). The
spaces Lp[0,1] for 0 < p < 1 are discussed in Exercise 1.30; they are not Banach
spaces.

Let us return to our example of the Bergman space L2
a(D). Observe that Corol-

lary 1.19 says that evaluation at any point w∈D is a bounded linear functional on the
Hilbert space L2

a(D). By Theorem 1.29, evaluation at w must thus be given by inner
product with some fixed vector in L2

a(D), that is, for each w ∈ D there is a function
in L2

a(D), which we will denote Kw(z), satisfying f (w) = 〈 f ,Kw〉 for all f ∈ L2
a(D).

Can we identify Kw? This has a nice answer, which is outlined in Exercise 1.25.
Next we’ll interpret the projection theorem when H = L2(D,dA/π) and M =

L2
a(D), the Bergman space. Can we find an explicit formula for the orthogonal pro-

jection P : L2(D,dA/π) → L2
a(D)? A simple lemma will be useful here.

Lemma 1.30. Let P : H → M be the orthogonal projection of a Hilbert space H
onto a closed subspace M of H . We have 〈 f ,Pg〉 = 〈P f ,g〉 for all vectors f and g
in H .

Proof. Let f and g be in H and write, using the projection theorem, f = m1 + n1,
g = m2 +n2, where m1,m2 ∈ M and n1,n2 ∈ M⊥. We have

〈 f ,Pg〉 = 〈m1 +n1,m2〉 = 〈m1,m2〉

while
〈P f ,g〉 = 〈m1,m2 +n2〉 = 〈m1,m2〉.

��

Returning to our question, if f ∈ L2(D,dA/π), then for any w ∈ D,

P f (w) = 〈P f ,Kw〉 = 〈 f ,PKw〉 = 〈 f ,Kw〉 =
∫

D

f (z)Kw(z)
dA
π

,

where Kw is the vector in L2
a(D) that gives the linear functional of evaluation at

w, and we have used the lemma for the second equality. Since by Exercise 1.25
Kw(z) = (1−wz)−2, this gives an integral formula for computing the projection P f .

The Bergman space furnishes an example of what are called functional Banach
spaces. Here is the definition: A Banach space X consisting of scalar-valued func-
tions on a set S is a functional Banach space if point evaluation es( f )≡ f (s) at each
point s of S is a bounded linear functional on X , and if no evaluation functional
es is identically 0. Other examples of functional Banach spaces, besides L2

a(D),
include C[0,1] in the supremum norm and �p for 1 ≤ p ≤ ∞. A non-example is
Lp([0,1],dx),1 ≤ p ≤ ∞; here the vectors are equivalence classes of functions, and
evaluation at a point of [0,1] doesn’t even make sense.
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1.5 Orthonormal Bases

Definition 1.31. An orthonormal set in a Hilbert space H is a set E with the prop-
erties:

(1) for every e ∈ E , ‖e‖ = 1, and
(2) for distinct vectors e and f in E , 〈e, f 〉 = 0.

For an easy example of an orthonormal set in the Hilbert space �2, take the
set E of vectors e j, j ≥ 1 where e j has a 1 in the jth coordinate and zeros else-
where. As a second example, consider the Hilbert space L2[0,2π], with respect to
normalized Lebesgue measure dt/(2π). The collection of functions eint for any in-
teger n form an orthonormal set in this Hilbert space. We often will write L2(T )
for L2([0,2π],dt/(2π)), where T denotes the unit circle and we are identifying a
function on [0,2π] with a function on T by f (t) = f (eit).

Definition 1.32. An orthonormal basis for a Hilbert space H is a maximal or-
thonormal set; that is, an orthonormal set that is not properly contained in any or-
thonormal set.

It is easy to see that in the �2 example above, the set {e j : j ≥ 1} is an orthonormal
basis. Harder, but still true, is that {eint : n ∈ Z}, where Z is the set of all integers
and eint = cos(nt) + isin(nt), is an orthonormal basis for L2(T ). This result is a
consequence of Fejér’s theorem; for a proof the reader is referred to [48]. Every
Hilbert space has an orthonormal basis (see Exercise 3.1 in Chapter 3). The proof
of this statement uses Zorn’s lemma, which will be discussed in Section 3.1. The
Hilbert spaces of principal interest to us will either have a finite or countably infinite
orthonormal basis.

A Hilbert space is also a vector space, and as such it has a linear (or Hamel) basis.
We digress here briefly to recall some facts and terminology from linear algebra.
Given a nonempty subset S in a vector space V , by a linear combination of vectors
in S we mean a finite sum of the form

n

∑
j=1

α jv j

where the vectors v j are in S and the coefficients α j are scalars. A set S spans V if
every vector in V is a (necessarily finite) linear combination of vectors in S. A set S
of vectors is said to be linearly independent if the only linear combination of vectors
in S that is equal to the zero vector is the one whose scalar coefficients are all zero.
A linear, or Hamel, basis for a vector space V is a subset of V that is both linearly
independent and spans V . It is easy to see that a Hamel basis can be equivalently
defined as a maximal linearly independent subset of V ; that is, a linearly independent
set that is not properly contained in any linearly independent set.

Every vector space has a Hamel basis, and for a given vector space, any two
Hamel bases can be put in one-to-one correspondence; proofs of these can be pro-
vided by the reader, or found, for example, in [14]. Notice that the concept of a
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Hamel basis depends only on the linear structure of V , and not the topological struc-
ture that comes when the vector space is endowed with a norm or inner product. It is
for this reason that in a Hilbert space the concept of an orthonormal basis proves to
be more central than that of a Hamel basis, so much so that in the context of Hilbert
spaces the term “basis” will always mean “orthonormal basis,” and “dimension” will
always refer to the (common) cardinality of any orthonormal basis. In particular, a
Hilbert space is said to be finite-dimensional if it has a finite orthonormal basis, and
infinite-dimensional otherwise. This convention will not lead to any confusion be-
cause of the following two facts: A finite orthonormal set in a Hilbert space H that
is not properly contained in any orthonormal set is in fact a Hamel basis for H , and
no Hilbert space with a finite Hamel basis can contain an infinite orthonormal set.
See Exercise 1.21 for a further exploration of these and related ideas.

Given a linearly independent sequence { fn}∞
1 in a Hilbert space H , there always

exists an orthonormal sequence {en}∞
1 such that

span{ f1, f2, . . . , fk} = span{e1,e2, . . . ,ek}

for each positive integer k, where “span” denotes the set of linear combinations of
the indicated set. An inductive process for constructing the vectors e j, called Gram–
Schmidt orthonormalization, is outlined in Exercise 1.19.

The last topic of this section is motivated by the question: When is an orthonor-
mal set in a Hilbert space an orthonormal basis? When {ek} is a finite or countably
infinite orthonormal set in H , then for every vector h ∈ H we have

∑ |〈h,ek〉|2 ≤ ‖h‖2;

this is known as Bessel’s inequality. It follows from the observation that the closest
vector to h in the linear span of the orthonormal set {e1,e2, . . . ,en} is ∑n

1〈h,ek〉ek
(see Exercise 1.21), and the Pythagorean identity of Proposition 1.22.

The identity in (e) of the next result is called Parseval’s identity; it is the equality
case of Bessel’s inequality.

Theorem 1.33. If {en}∞
1 is an orthonormal sequence in a Hilbert space H , then

the following conditions are equivalent:

(a) {en}∞
1 is an orthonormal basis.

(b) If h ∈ H and h ⊥ en for all n, then h = 0.
(c) For every h ∈ H , h = ∑∞

1 〈h,en〉en; equality here means the convergence in
the norm of H of the partial sums to h.

(d) For every h ∈ H , there exist complex numbers an so that h = ∑∞
1 anen.

(e) For every h ∈ H , ∑∞
1 |〈h,en〉|2 = ‖h‖2.

(f) For all h and g in H , ∑∞
1 〈h,en〉〈en,g〉 = 〈h,g〉.

Proof. The equivalence of (a) and (b) follows almost immediately from the defini-
tion, since if 0 �= h and h ⊥ en for all n, then {en}∞

1 ∪{h/‖h‖} is an orthonormal
set.
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Now assume (b) and suppose h ∈ H and let cn = 〈h,en〉. By Bessel’s inequal-
ity we have ∑∞

1 |cn|2 < ∞, so that the partial sums sk = ∑k
n=1 cnen form a Cauchy

sequence in H with

‖sk − sm‖2 =
k

∑
n=m+1

|cn|2

whenever k > m. By completeness these partial sums must converge in H to some
vector s. We claim s = h, which will show (c). For each fixed n,

〈s,en〉 = 〈 lim
k→∞

sk,en〉 = lim
k→∞

〈sk,en〉 = 〈h,en〉,

where we have used the continuity of the inner product, a consequence of the
Cauchy–Schwarz inequality. Thus 〈s− h,en〉 = 0 for all n, and by (b), s = h. The
reverse implication, (c) =⇒ (b), is easy, since if (c) holds, and h ⊥ en for all n, then
h = ∑∞

1 〈h,en〉en implies that h = 0.
Clearly (c) implies (d) and the reverse implication follows from setting fk =

∑k
j=1 a je j and noting as above that

〈h,en〉 = 〈 lim
k→∞

fk,en〉 = lim
k→∞

〈 fk,en〉 = an.

Next we show that (c) implies (e). Continuity of the norm shows that if h =
∑∞

1 〈h,en〉en, then ‖sk‖→ ‖h‖ where sk is the partial sum ∑k
n=1〈h,en〉en and ‖sk‖2 =

∑k
1 |〈h,en〉|2 by the Pythagorean formula. Thus (e) holds.
Clearly (f) implies (e) and the reverse implication can be obtained by using the

polarization identity to write 〈h,g〉 in terms of ‖h + g‖2,‖h− g‖2,‖h + ig‖2 and
‖h− ig‖2, expanding each of these norms using (e), and computing.

Finally, if (e) holds, and h ⊥ en for all n, then ‖h‖2 = ∑∞
1 |〈h,en〉|2 = 0, giving

(b). ��
When {en}∞

1 is an orthonormal basis for a Hilbert space H , and h ∈ H , the
scalars 〈h,en〉 are called the Fourier coefficients of h with respect to {en}∞

1 . In this
case, the sum in (c) of the above theorem is referred to as the Fourier series of h,
relative to the specified orthonormal basis.

No countably infinite orthonormal basis can ever be a Hamel basis. Indeed, using
Gram–Schmidt orthonormalization we can show something stronger. Suppose that
{ f1, f2, . . .} is a linearly independent sequence in a Hilbert space H . We claim
that there is a vector in H which is not a finite linear combination of the f j.
The Gram–Schmidt process produces an orthonormal sequence {e1,e2, . . .} with
span{e1,e2, . . . ,ek} = span{ f1, f2, . . . , fk} for all positive integers k. Write down
any sum ∑∞

1 c je j where infinitely many of the coefficients c j are nonzero and
∑∞

1 |c j|2 < ∞. This sum converges in H to some vector g, since its partial sums
form a Cauchy sequence in H . Since 〈g,en〉 = cn, and this is nonzero for infinitely
many n, g is not in the span of {e1,e2, . . . ,ek} for any k, and hence neither is it in
the span of { f1, f2, . . . , fk} for any k.

Example 1.34. It is easy to see that if en =
√

n+1zn, then {en}∞
n=0 is an or-

thonormal sequence in the Bergman space L2
a(D). Is it an orthonormal basis? It’s
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tempting to think we can make short work of answering this question. By part
(d) of Theorem 1.33, we need only show that every function f in the Bergman
space can be written as f = ∑∞

0 anen = ∑∞
0 an

√
n+1zn, and since f is analytic in

the disk it has a power series expansion f = ∑∞
0 bnzn. But the two equality signs, in

f = ∑∞
0 an

√
n+1zn and in f = ∑∞

0 bnzn, refer to two different kinds of convergence.
In the first, we want convergence of the partial sums in the L2(D,dA/π) norm, while
the second gives us pointwise convergence in D, or, better, uniform convergence on
compact subsets of D of the partial sums of ∑∞

0 bnzn to f . Since this latter type of
convergence does not imply L2 convergence, something more must be done.

To that end, we will show that {en}∞
n=0 is an orthonormal basis for L2

a(D) by
showing that if f ∈ L2

a(D) and f ⊥ en for all n = 0,1,2 . . ., then f = 0. The assump-
tion that f ⊥ en is simply that

∫
D

f (z)zn dA
π

= 0.

We can write f in terms of its power series in D, f (z) = ∑∞
0 bkzk, where the partial

sums of this series converge uniformly on compact subsets of D. Fix t < 1 and use
this uniform convergence to write

∫
tD

f (z)zn dA =
∫

tD

(
∞

∑
k=0

bkzk

)
zn dA

=
∞

∑
k=0

bk

∫
tD

zkzn dA

= π
bn

n+1
t2n+2

since the integral in the penultimate line is 0 unless k = n, in which case it
is πt2n+2/(n + 1). Now f (z)zn is in L2(D,dA/π) ⊆ L1(D,dA/π), so we can let
t ↑ 1 and use the dominated convergence theorem to see that for any nonnegative
integer n, ∫

D

f (z)zn dA
π

=
bn

n+1
.

Thus if this integral is 0 for all n, we see that bn = 0 for all n and hence f = 0 as
desired.

Specializing the result of (e) of Theorem 1.33 to H = L2[a,b] we obtain the
Riesz–Fischer theorem, named for simultaneous and independent work of Riesz and
Ernst Fischer in 1907. More precisely, Fischer showed that L2[a,b] is complete (see
also Section A.3 in the Appendix), while Riesz showed that given a orthonormal
basis {en} of L2[a,b], the map which sends f ∈ L2[a,b] to the square-summable
sequence {an}, defined by an =

∫ b
a f endx, is an isometric linear bijection onto �2.

These two results are individually or collectively referred to as the “Riesz–Fischer
theorem”; they are equivalent in the sense that each can be recaptured from the other.
Theorem 1.29, the Riesz representation theorem (or as it should be more accurately
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called, the Fréchet–Riesz Representation theorem) enters into the mix as well, in
the following argument due to Riesz. Suppose we have an orthonormal basis {ei}
(known to Riesz, based on a talk given by Erhard Schmidt it 1905, to be countable)
for L2[a,b] and a sequence {ci} of complex numbers with ∑ |ci|2 < ∞. Define Λ on
L2[a,b] by

Λ( f ) = ∑ci〈 f ,ei〉,

where 〈 f ,ei〉 =
∫ b

a f eidx. The mapping Λ is linear, and bounded by the Cauchy–
Schwarz inequality and Bessel’s inequality. By Theorem 1.29, there exists g ∈
L2[a,b] such that ∫ b

a
f gdx = Λ( f ) = ∑ci〈 f ,ei〉

for all f ∈ L2[a,b]. Setting f = ei gives
∫ b

a ei gdx = ci, and setting f = g gives

∫ b

a
|g|2dx = ∑ |〈g,ei〉|2.

Now imagine starting with g ∈ L2[a,b] and defining ci =
∫ b

a geidx. Defining Λ as
above, we get the stated isometric linear bijection between L2[a,b] and �2. Riesz
also provided three proofs for the completeness of L2[a,b]. Exercise 1.27 outlines
one of these, which relies on Theorem 1.29 as well.

1.6 Exercises

1.1. Prove the reverse triangle inequality: For vectors x,y in any normed linear
space,

‖x+ y‖ ≥ |‖x‖−‖y‖| .
1.2. Show that C[0,1] is a Banach space in the supremum norm. Hint: If { fn} is
a Cauchy sequence in C[0,1], then for each fixed x ∈ [0,1], { fn(x)} is a Cauchy
sequence in C, which is complete.

1.3. Let C1[0,1] be the space of continuous, complex-valued functions on [0,1] with
continuous first derivative. Show that in the supremum norm ‖ · ‖∞, C1[0,1] is not a
Banach space, but that in the norm defined by ‖ f‖ = ‖ f‖∞ +‖ f ′‖∞ it does become
a Banach space.

1.4. Show that the space �1 of Example 1.5 is complete.

1.5. Show that a metric space is complete if every Cauchy sequence has a convergent
subsequence.

1.6. Assume that you know Minkowski’s inequality

(
n

∑
j=1

|a j +b j|2
)1/2

≤
(

n

∑
j=1

|a j|2
)1/2

+

(
n

∑
j=1

|b j|2
)1/2
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for C
n in the Euclidean norm.

(a) Show that for {an} and {bn} in a weighted sequence space �2
β ,

(
∞

∑
j=0

|a j +b j|2β ( j)2

)1/2

≤
(

∞

∑
j=0

|a j|2β ( j)2

)1/2

+

(
∞

∑
j=0

|b j|2β ( j)2

)1/2

.

(b) Verify directly (without appealing to the Riesz–Fischer theorem on the com-
pleteness of L2(X ,µ) in general) that �2

β is complete.

1.7. Let x and y be any two vectors in an inner product space and set λ = 〈y,y〉.
Show that

λ
[
λ 〈x,x〉− |〈x,y〉|2

]
= 〈λx−〈x,y〉y,λx−〈x,y〉y〉 .

Use this to derive the Cauchy–Schwarz inequality and to determine when equal-
ity holds in the Cauchy–Schwarz inequality.

1.8.(a) Show that for a normed linear space X , the map x →‖x‖ of X into [0,∞) is
continuous. Is it uniformly continuous?

(b) Show that the mappings X ×X → X given by (x,y) → x + y, and C×X → X
given by (α,x) → αx are continuous. The topologies on X ×X and C×X are
the product topologies.

(c) Suppose that X is an inner product space. Show that the maps x→〈x,y〉 and x→
〈y,x〉 are continuous on X for each fixed y in X . Are they uniformly continuous?

1.9.(a) Show that if ∑∞
0 |an|2 < ∞, then the power series ∑∞

0 anzn has radius of con-
vergence at least one, and hence is an analytic function in the unit disk D. Hint:
Recall that the radius of convergence R is determined by

1
R

= limsup
n→∞

|an|1/n.

(b) Show that if
lim
n→∞

β (n)1/n ≥ 1

and
∞

∑
0
|an|2β (n)2 < ∞

then the power series
∞

∑
0

anzn

has radius of convergence at least equal to 1.
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1.10. Suppose that X and Y are normed linear spaces and that T : X → Y is a linear
map (meaning that T (αx1 + βx2) = αT (x1) + βT (x2) for all vectors x1,x2 in X
and all scalars α and β ). Suppose that T maps X onto Y and is isometric (meaning
‖T x‖ = ‖x‖ for all x ∈ X).

(a) Show that T is one-to-one.
(b) Show that if X is a Banach space, so is Y .
(c) Show that if X is a Hilbert space, then so is Y if we define

〈y1,y2〉Y = 〈x1,x2〉X

where x1 and x2 are the unique points in X satisfying T x1 = y1 and T x2 = y2.
(d) Explain how this shows that the weighted Hardy spaces H2(β ) of Example 1.7

are Hilbert spaces.

1.11. For 1 ≤ p < ∞, define Lp
a(D) to be the set of all analytic functions f on the

unit disk D for which ∫
D

| f (z)|p dA
π

< ∞

and set ‖ f‖p to be the value of this integral. Show that Lp
a(D) is a Banach space by

first obtaining the appropriate analogue of Corollary 1.19.

1.12. Suppose S is a (not necessarily closed) subspace of a Hilbert space H . Show
that S⊥⊥ ≡ (S⊥)⊥ is the closure of S.

1.13. Show that C[0,1] in the supremum norm is not an inner product space; that is,
the norm cannot be derived from an inner product.

1.14. Show that in any normed linear space where the norm satisfies the parallel-
ogram equality, an inner product can be defined which induces the norm in the
usual sense that 〈x,x〉 = ‖x‖2. Hints: Define 〈x,y〉 by polarization and show that
〈x,y〉 = 〈y,x〉. Next show that 〈x + y,z〉 = 〈x,z〉+ 〈y,z〉 by showing the equality of
the real parts and imaginary parts of both sides of this identity separately. Finally,
show that 〈sx,y〉 = s〈x,y〉 for s in turn an integer, a rational number, a real number
and a complex number.

1.15. Let M be a closed subspace of a Hilbert space H , and suppose x0 is in H .
Show that

min{‖m− x0‖ : m ∈ M} = max{|〈x0,n〉| : n ∈ M⊥,‖n‖ = 1}.

1.16. Let Λ : X → C be a bounded linear functional on a normed linear space X .
Recall that ‖Λ‖ is defined as sup{|Λ(x)| : ‖x‖ ≤ 1}. Show that

‖Λ‖ = sup{|Λ(x)| : ‖x‖ = 1}
= sup{|Λ(x)|/‖x‖ : x �= 0}
= inf{δ : |Λ(x)| ≤ δ‖x‖ for all x ∈ X}.
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1.17. Let 1 < p < ∞ and define q by 1/p+1/q = 1.

(a) Show that for each fixed {an} ∈ �q, the linear mapping defined by

Λ({bn}) = ∑bnan

is a bounded linear functional on �p with norm ‖{an}‖q.
(b) Conversely, if Λ is a bounded linear functional on �p, then there exists {an} in

�q such that
Λ({bn}) = ∑bnan

for all {bn} in �p.
(c) What are the corresponding statements for the case p = 1?

1.18. Show that on the Hardy space H2 as described in Example 1.7, evaluation at
each point w ∈ D is a bounded linear functional. Hint: Use the Cauchy–Schwarz
inequality to show that

| f (w)| ≤ ‖ f‖
(

1
1−|w|2

)1/2

.

1.19. In this problem we describe the Gram–Schmidt process: Let x1,x2, . . . be a
sequence of linearly independent vectors in an inner product space. Define vectors
inductively by

e1 = x1/‖x1‖

fn = xn −
n−1

∑
j=1

〈xn,e j〉e j for n ≥ 2

en = fn/‖ fn‖ for n ≥ 2.

Show that {en} is an orthonormal sequence with the property that the linear span of
{x1,x2, . . . ,xn} is the same as the linear span of {e1,e2, . . . ,en} for each n.

1.20. Apply the Gram–Schmidt process (Exercise 1.19) to the three vectors {1,x,x2}
in L2([−1,1],dx). Use your answer to find the distance from x3 to the span of
{1,x,x2}; equivalently, find

min
a,b,c∈C

∫ 1

−1
|x3 −a−bx− cx2|2dx.

When the Gram–Schmidt process is applied to the sequence 1,x,x2,x3, . . ., the re-
sulting vectors are called the Legendre polynomials.

1.21. Let H be a Hilbert space.

(a) Every orthonormal set in H is linearly independent (recall this means that every
finite subset is linearly independent).
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(b) Suppose {e1,e2, . . . ,en} is an orthonormal set in H and define

M ≡ span{e1,e2, . . . ,en}.

Check that M is closed and show that if P is the projection of H onto M, then
Px = ∑n

1〈x,e j〉e j for all x ∈ H .
(c) Show that if H has a finite orthonormal basis, it is also a Hamel basis for H .

1.22. Suppose M is a closed subspace of a Hilbert space H and λ is a continuous
linear functional on M with

sup
m∈M, m�=0

|λ (m)|
‖m‖ = c.

Using Hilbert space methods, show that there is a unique continuous linear func-
tional Λ on H with

λ (m) = Λ(m)

for all m ∈ M and

sup
h∈H, h�=0

|Λ(h)|
‖h‖ = c.

1.23. Let H be an infinite dimensional Hilbert space. Show that H has a countable
orthonormal basis if and only if H has a countable dense subset.

1.24. Given a subset E ⊆N, consider the bounded sequence xE ≡ {xn}∞
1 with xn = 1

if n ∈ E, and xn = 0 otherwise.

(a) Show that for each E ⊆ N, there is an open ball BE in �∞ centered at xE such that
for distinct subsets E and F of N, BE and BF are disjoint.

(b) Conclude that �∞ contains no countable dense subset. This says that �∞ is non-
separable.

1.25.(a) Show that if f ∈ L2
a(D) has Taylor series expansion ∑∞

0 anzn in D, then

‖ f‖2 =
∞

∑
n=0

|an|2
1

n+1
.

Notice that this says that L2
a(D) is a weighted Hardy space H2(β ) for β (n) =

(n+1)−
1
2 . Also, find an expression in terms of the Taylor coefficients of f and

g for 〈 f ,g〉L2
a(D), where f and g are in L2

a(D).
(b) We have seen that evaluation at w ∈ D is a bounded linear functional on L2

a(D).
Thus there is a function, call it Kw(z), in L2

a(D) so that f (w) = 〈 f ,Kw〉 for all f ∈
L2

a(D). Show that Kw(z) = (1−wz)−2. What is the norm of the linear functional
of evaluation at w?

1.26. Show that if f (z) = ∑∞
n=0 anzn is in the Hardy space H2, then for each 0 < r < 1
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∫ 2π

0
| fr(eiθ )|2 dθ

2π
=

∞

∑
n=0

|an|2r2n,

where fr(eiθ ) = f (reiθ ). Conclude that

lim
r→1−

∫ 2π

0
| f (reiθ )|2 dθ

2π

is equal to the H2 norm of f . Conversely, show that if f (z) = ∑∞
n=0 anzn is analytic

in the unit disk D and

lim
r→1−

∫ 2π

0
| f (reiθ )|2 dθ

2π
< ∞

then ∑∞
n=0 |an|2 < ∞.

1.27. [21] Complete the argument outlined below, due to Riesz, to give a proof of
the completeness of L2[a,b]. Let { fn} be a Cauchy sequence in L2[a,b].

(a) Show that {‖ fn‖} is a Cauchy sequence of scalars, and hence a bounded se-
quence, say ‖ fn‖ ≤ M.

(b) Show that for fixed g ∈ L2[a,b],
∫ b

a fngdx is a Cauchy sequence and its limit αg
satisfies |αg| ≤ M‖g‖.

(c) Define Λ : L2[a,b] → C by Λ(g) = αg. Use Theorem 1.29 to show that there
exists F ∈ L2[a,b] with αg =

∫ b
a Fgdx for all g ∈ L2[a,b].

(d) Show that fn converges to F in L2[a,b].

1.28. A sequences {hn} in a Hilbert space H is said to converge weakly to h ∈ H
if

lim
n→∞

〈hn,g〉 = 〈h,g〉

for every g ∈ H .

(a) If {en} is an orthonormal sequence in H , show that en → 0 weakly.
(b) Show that if hn → h in norm, then hn → h weakly. Show that the converse is

false, but that if hn → h weakly and ‖hn‖→ ‖h‖, then hn → h in norm.

1.29. Show that if { fn} is a sequence in L2
a(D) and fn → f weakly in L2

a(D) (see the
previous exercise for the definition), then fn(z) → f (z) for each z ∈ D.

1.30. Let 0 < p < 1 and define Lp[0,1], with respect to Lebesgue measure dx, to be
the set of all (equivalence classes of) measurable functions for which

∫ 1

0
| f |pdx < ∞.

(a) Show that if we define

d( f ,g) =
∫ 1

0
| f −g|pdx

for f ,g ∈ Lp[0,1], then d is a metric on Lp[0,1] and the resulting metric space is
complete.
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(b) Show that ‖ ·‖p does not satisfy the triangle inequality and thus is not a norm on
Lp[0,1], where as usual we write

‖ f‖p =
(∫ 1

0
| f |pdx

)1/p

.

1.31. Suppose that H1, H2, . . . is a finite or countable collection of Hilbert spaces.
The purpose of this exercise is to define the (external) direct sum of the spaces Hn.
We give the definition in the case of a countable collection and leave it to the reader
to describe the obvious modifications in the finite case. Define H to be the set of
all sequences {hn} with hn ∈ Hn for each n and ∑∞

1 ‖hn‖2 < ∞. Addition and scalar
multiplication on H are defined coordinatewise, and for h = {hn} and g = {gn} in
H we define

〈h,g〉H =
∞

∑
n=1

〈hn,gn〉Hn .

(a) Show that 〈·, ·〉 is an inner product on H , and in the resulting norm ‖h‖2 =
∑∞

1 ‖hn‖2, H is a Hilbert space. (Use the Cauchy–Schwarz inequality to show
that the sum in the definition of 〈h,g〉H converges absolutely.)

(b) Denote H as just defined by ∑⊕Hn. Sometimes we like to think of Hn as a sub-
space in ∑⊕Hn; this means that we identify Hn with those elements of ∑⊕Hn
which have a zero in all but the nth position. Show that with this identification,
Hn ⊥ Hm for m �= n.

1.32. In this problem we compare the results of the previous exercise with a slightly
different, but essentially equivalent, notion of the direct sum of Hilbert spaces.
Suppose that H1,H2, . . . is a collection of pairwise orthogonal closed subspaces
of a Hilbert space H . By ∑⊕Hn (which we temporarily call the internal direct
sum of the spaces Hn) we mean the closure of the collection of all finite sums
h1 +h2 + · · ·+hm where m ∈ N and h j ∈ H j for all j. Show that this internal direct
sum is isomorphic to the external direct sum via the correspondence

(h1,h2,h3, . . .) ↔ h1 +h2 +h3 + · · · .

1.33. If H1,H2, . . . is a collection of pairwise orthogonal closed subspaces of a
Hilbert space H , and ∑⊕Hn is their internal direct sum (in the terminology of
the previous exercise), show that ∑⊕Hn is the intersection of all closed subspaces
containing ∪nHn. This is called the closed linear span of the subspaces Hn and is
denoted

∨
n Hn. Thus we have

∨
n

Hn = ∑
n
⊕Hn

for pairwise orthogonal Hn.



Chapter 2
Operator Theory Basics

The constantly widening field of applications of functional
analysis leads to a systematic reconsideration of its basic
methodological standpoints. One of these standpoints asserts
that the original and basic concept of functional analysis is the
concept of a space (normed, metric,. . . ). To study a problem one
must choose a space and study the corresponding functionals,
operators, etc. in it. . . . [T]he choice of the space in which the
problem is studied is partly connected with the subjective aims
which the investigator sets himself. Apparently the objective
data are only the operators that appear in the equations of the
problem. On this account it seems to us that the original and
basic concept of functional analysis is that of an operator.
S. Krein and Yu. Petunin ([28], p. 85).

Linear operators connect, either explicitly or in the background, to all of the topics
of this book, so in this chapter we will discuss the most basic properties of operators
on Banach or Hilbert spaces.

2.1 Bounded Linear Operators

Definition 2.1. If X and Y are normed linear spaces, a map T : X → Y is linear if

T (αx1 +βx2) = α(T x1)+βT (x2)

for all x1,x2 in X and scalars α and β . We say the linear map T is a bounded linear
operator from X to Y if there is a finite constant C such that ‖T x‖Y ≤C‖x‖X for all
x in X .

We will normally suppress the subscript on the norm symbol ‖·‖, which indicates
the space in which the vector lives, unless there is a potential for confusion. Bounded
linear functionals introduced in the last chapter are bounded linear operators for the
special case Y = C. As with linear functionals, boundedness of a linear operator is
equivalent to continuity, as the next result, whose proof is left to the reader, states.

Proposition 2.2. If T : X → Y is a linear map from a normed linear space X to a
normed linear space Y , the following are equivalent:

(a) T is bounded.
(b) T is continuous.
(c) T is continuous at 0.

B.D. MacCluer, Elementary Functional Analysis, DOI 10.1007/978-0-387-85529-5 2, 31
c© Springer Science+Business Media, LLC 2009
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As with linear functionals, we define ‖T‖= sup{‖T x‖ : ‖x‖≤ 1} and refer to this
as the “operator norm of T .” This terminology is justified by the following result,
whose proof is left as Exercise 2.1.

Proposition 2.3. The collection B(X ,Y ) of all bounded linear operators from a
normed linear space X to a normed linear space Y is a normed linear space in the
operator norm, where the vector operations are defined pointwise. If, in addition, Y
is a Banach space, then B(X ,Y ) is a Banach space.

When X = Y we will write B(X) for B(X ,X). Note that, as promised in Section
1.4, Proposition 2.3 tells us that the collection of all bounded linear functionals on
a normed linear space forms a Banach space, since Y = C is complete.

Before discussing any more of the general theory of bounded linear operators it’s
helpful to have a list of examples in mind.

Example 2.4. Here is an example we have already met. Suppose M is a closed sub-
space in a Hilbert space H . Let PM : H → M be the orthogonal projection of H
onto M. By the projection theorem, PM is a bounded linear operator of norm 1 (if
M �= {0}).

Example 2.5. Let (X ,M,µ) be any σ -finite measure space and choose ϕ ∈
L∞(X ,µ). Define the multiplication operator Mϕ : L2(X ,µ)→L2(X ,µ) by Mϕ( f )=
ϕ f ; this is clearly a linear map and since∫

X
|ϕ f |2dµ ≤ ‖ϕ‖2

∞

∫
X
| f |2dµ

we see that Mϕ is bounded with norm at most ‖ϕ‖∞. We claim that in fact ‖Mϕ‖ =
‖ϕ‖∞. To see this suppose α < ‖ϕ‖∞. If E is defined to be {x : |ϕ(x)| > α}, then
µ(E) > 0. The idea is to consider something like χE to show that ‖Mϕ‖> α , but we
can’t quite do this since χE will not be in L2(X ,µ) if µ(E) is infinite. Instead, we
use the σ -finiteness hypothesis on µ to find a subset E ′ of E with 0 < µ(E ′) < ∞.
Then f = χE ′ will be in L2(X ,µ) and

‖Mϕ f‖2 =
∫

E ′
|ϕ|2dµ > α2µ(E ′) = α2

∫
X
| f |2dµ

so that ‖Mϕ‖> α , where α is any chosen value less that ‖ϕ‖∞. Thus ‖Mϕ‖= ‖ϕ‖∞.

In the next example, which combines the previous two, we encounter the com-
position of two linear operators. In general, if A ∈ B(X ,Y ) and B ∈ B(Y,V ), then
by the product BA we mean the mapping defined by BA(x) = B(A(x)) for x ∈ X . It
is easy to see that BA ∈ B(X ,V ) and ‖BA‖ ≤ ‖B‖‖A‖.

Example 2.6. Consider the Bergman space L2
a(D) and let ϕ ∈ L∞(D,dA/π); note

that ϕ is not assumed to be analytic. Define the Toeplitz operator with symbol ϕ
on L2

a(D) by Tϕ( f ) = P(ϕ f ), where P is the projection of L2(D,dA/π) onto L2
a(D).



2.1 Bounded Linear Operators 33

Clearly Tϕ is linear, and since P : L2(D,dA/π) → L2
a(D) is bounded with norm 1,

and Mϕ : L2(D,dA/π) → L2(D,dA/π) is bounded of norm ‖ϕ‖∞, Tϕ is bounded
with norm at most ‖ϕ‖∞. When ϕ is analytic in L∞(D,dA/π), the projection factor
in the definition of Tϕ serves no purpose, and in this case Tϕ is just the restriction of
the multiplication operator Mϕ to the closed subspace L2

a(D) of L2(D).

Example 2.7. The next pair of operators are simple but important ones. They act
from �2 to itself. The first, called the forward shift, is defined by

S(x1,x2, . . .) = (0,x1,x2, . . .).

It is easy to see that it is a bounded linear operator of norm one; in fact it is an
isometry, meaning ‖Sx‖ = ‖x‖ for every x = (x1,x2, . . .) ∈ �2. The backward shift is
the operator from �2 to �2 which takes (x1,x2,x3, . . .) to (x2,x3, . . .). It has norm 1,
but is not an isometry (why?).

Example 2.8. Suppose that H is a Hilbert space with orthonormal basis {en}∞
1 .

Choose any bounded sequence of complex numbers {αn}∞
1 and set Aen = αnen.

Extend A by linearity to any finite linear combination of the en, and extend A to
all of H by continuity, noting that linearity is preserved. Explicitly this means the
following. Given h ∈ H , we know h = ∑∞

1 〈h,en〉en, where the sum converges in
H . Since {αn} is a bounded sequence, the partial sums of ∑∞

1 〈h,en〉αnen form a
Cauchy sequence in H and thus converge in H ; call the sum Ah. Since

‖Ah‖2 =
∞

∑
1
|〈h,en〉|2|αn|2 ≤ (sup

n
|αn|2)

∞

∑
1
|〈h,en〉|2 = (sup

n
|αn|)2‖h‖2,

we see that A is bounded with ‖A‖ ≤ supn |αn|. Consideration of Aen shows that,
indeed, we have equality here. Such an operator A is called a diagonal operator,
with diagonal sequence {αn}. The terminology comes from defining, in analogy
with the finite-dimensional case, the matrix MA of A (with respect to the basis {en})
to be the (infinite) matrix with i jth entry 〈Ae j,ei〉. This is a diagonal matrix when A
is a diagonal operator.

In spite of its usefulness in finite-dimensional settings, we will not find it par-
ticularly helpful to work with the matrix of a general bounded linear operator on
a Hilbert space H , in part because it is not easy to tell if a linear operator A is
bounded by looking at its matrix MA. Another way to say this is that while every
bounded linear operator corresponds to a matrix, the converse is not true.

Example 2.9. We describe a class of operators called integral operators. Start with
a σ -finite measure space (X ,M,µ) and a measurable function k : X ×X → C with
k ∈ L2(X ×X ,µ ×µ). Define K : L2(X ,µ) → L2(X ,µ) by K f = g where

g(x) =
∫

X
k(x,y) f (y)dµ(y)

for x in X . We call k the kernel of the integral operator K. Since k ∈ L2(X ×X), for
almost every x ∈ X , the function y �→ k(x,y) is in L2(X ,µ), and thus the function
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y �→ k(x,y) f (y) is integrable if f ∈ L2(X ,µ). We show that K maps into L2(X ,µ)
and is bounded. For f ∈ L2(X ,µ) we have

‖K( f )‖2 =
∫

X
|g(x)|2dµ(x) =

∫
X

∣∣∣∣
∫

X
k(x,y) f (y)dµ(y)

∣∣∣∣
2

dµ(x)

≤
∫

X

(∫
X
|k(x,y)|| f (y)|dµ(y)

)2

dµ(x)

≤
∫

X

(∫
X
|k(x,y)|2dµ(y)

)(∫
X
| f (y)|2dµ(y)

)
dµ(x)

= ‖ f‖2
∫

X

∫
X
|k(x,y)|2dµ(y)dµ(x)

= ‖ f‖2‖k‖2,

where we have used the Cauchy–Schwarz inequality midway through the calcula-
tion. This computation shows that K is bounded from L2(X ,µ) into L2(X ,µ) with
norm at most ‖k‖. Some of the measure-theoretic technicalities of this example can
be bypassed by taking, for example, X = [0,1] and requiring k(x,y) to be continuous
on [0,1]× [0,1].

A particular integral operator of interest is the Volterra operator; it comes from
the choice X = [0,1], with Lebesgue measure, and k(x,y) equal to the characteristic
function of the lower triangle {(x,y) : y ≤ x} in the unit square [0,1]× [0,1]. This
gives

K f (x) =
∫ x

0
f (y)dy,

so the Volterra operator is sometimes called the “operator of indefinite integration.”
By the above remarks, its norm is at most 1/

√
2; computing the norm exactly is not

so easy; see [17], Problem 188.
A bounded linear operator T on a Banach space X is said to attain its norm if there

is a nonzero vector x in X with ‖T x‖ = ‖T‖‖x‖. See Exercise 2.8 for an exploration
of this issue in the Hilbert space setting.

2.2 Adjoints of Hilbert Space Operators

Now that we have some examples of bounded linear operators in mind, let us turn
to the notion of the adjoint of a Hilbert space operator. Later we will define adjoints
of operators on Banach spaces, and compare it to the definition we give now in the
Hilbert space setting. As motivation for our work in this section, recall that given an
n×n matrix A = (ai j) with complex entries, its conjugate transpose A∗ is the n×n
matrix whose i jth entry is a ji. Associate to the matrix A the linear operator TA on
C

n given by TA(v) = Av where v ∈ C
n is written as a column vector. For any vectors

v and w in C
n, we have
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〈TAv,w〉 = 〈v,TA∗w〉. (2.1)

The operator TA∗ is called the adjoint of the operator TA, and the analogue of the
property in Equation (2.1) will lead us to the idea of the adjoint of any bounded
linear operator between Hilbert spaces. To make this precise, we begin with the
definition of a sesquilinear form.

Definition 2.10. If H and K are both Hilbert spaces, a sesquilinear form u : H ×
K → C is a mapping satisfying

(1) u(αh+βg,k) = αu(h,k)+βu(g,k), and
(2) u(h,αk +β f ) = αu(h,k)+βu(h, f )

for all h,g ∈ H , all k, f ∈ K and all scalars α and β . A sesquilinear form u is
bounded if there is a finite constant M such that |u(h,k)| ≤ M‖h‖‖k‖ for all h ∈ H
and k ∈ K .

Setting H = K and letting u(h,k) be the inner product 〈h,k〉 gives an example
of a sesquilinear form that is bounded (by the Cauchy– Schwarz inequality). More
generally, if A ∈ B(H ,K ) and B ∈ B(K ,H ), then both u(h,k) ≡ 〈Ah,k〉 and
u(h,k) ≡ 〈h,Bk〉 (where the inner products are in K and H , respectively) define
sesquilinear forms that are bounded, since, for example,

|u(h,k)| = |〈Ah,k〉| ≤ ‖Ah‖‖k‖ ≤ ‖A‖‖h‖‖k‖.

The next result describes all bounded sesquilinear forms.

Theorem 2.11. Let H and K be Hilbert spaces and suppose that u : H ×K →C

is a bounded sesquilinear form. There exists a unique A ∈ B(H ,K ) such that

u(h,k) = 〈Ah,k〉K

for all h ∈ H and k ∈ K .

Proof. For fixed h ∈ H we define a mapping Λh : K → C by

Λh(k) = u(h,k).

One can easily check that Λh is linear. Moreover, since u is bounded by hypothesis,

|Λh(k)| = |u(h,k)| = |u(h,k)| ≤ M‖h‖‖k‖

for some M independent of h and k. Thus Λh is a bounded linear functional on K .
By the Riesz representation theorem this functional must therefore be given by inner
product with a unique vector f in K :

Λh(k) = 〈k, f 〉K

for all k ∈ K , and moreover ‖Λh‖ = ‖ f‖. Since we have already observed that
‖Λh‖ ≤ M‖h‖, we must have ‖ f‖ ≤ M‖h‖. This process defines a map A from H
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to K taking h to f . This mapping is linear: If h1,h2 are in H and α ∈ C with
Ah1 = f1 and Ah2 = f2 so that

u(h1,k) = 〈k, f1〉K

and
u(h2,k) = 〈k, f2〉K

for all k ∈ K , then

Λαh1+h2(k) = u(αh1 +h2,k) = αu(h1,k)+u(h2,k)
= α〈k, f1〉K + 〈k, f2〉K = 〈k,α f1 + f2〉K ,

so that A maps αh1 + h2 to α f1 + f2. We have already seen that A is bounded with
‖Ah‖ = ‖ f‖ ≤ M‖h‖. This shows that there is a bounded linear operator A with

u(h,k) = 〈k,Ah〉K

or equivalently
u(h,k) = 〈Ah,k〉K .

Moreover, A is unique, since if 〈 f1,k〉K = 〈 f2,k〉K for all k ∈ K , we must have
〈 f1 − f2,k〉K = 0 for all k, and therefore f1 = f2. ��

As a consequence of the last result, suppose we start with an operator A in
B(H ,K ) and define u : K ×H → C by

u(k,h) ≡ 〈k,Ah〉K .

This is a bounded sesquilinear form. Applying Theorem 2.11, we can find the unique
operator, call it A∗, in B(K ,H ) satisfying

u(k,h) = 〈A∗k,h〉H

for all k ∈ K and h ∈ H . Taking conjugates, we have the following important
conclusion.

Theorem 2.12. Given Hilbert spaces H and K and A ∈ B(H ,K ), there is a
unique A∗ ∈ B(K ,H ) so that

〈Ah,k〉K = 〈h,A∗k〉H

for all h ∈ H and k ∈ K .

The operator A∗ in the last result is called the (Hilbert space) adjoint of A. In the
case that H = K and A∗ = A we say that A is self-adjoint or Hermitian. Looking
back at the statement of Lemma 1.30 in Chapter 1, we see that orthogonal projec-
tions (onto closed subspaces) are self-adjoint operators.

Some more examples are in order. For the forward shift S on �2 as in Example 2.7,
it is easy to check that S∗ is the backward shift; to see this it suffices to compute
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〈Sx,y〉 and 〈x,By〉 and see that they agree, where x and y are in �2 and B denotes the
backward shift.

For a multiplication operator Mϕ , defined on L2(X ,µ) for some σ -finite measure
space (X ,µ) and ϕ ∈ L∞(X ,µ), we have

〈Mϕ f ,g〉 = 〈ϕ f ,g〉 =
∫

X
ϕ f gdµ = 〈 f ,ϕg〉 = 〈 f ,Mϕ g〉

for any f ,g ∈ L2(X ,µ). Thus M∗
ϕ = Mϕ , and a multiplication operator is self-adjoint

if and only if its symbol ϕ is real-valued almost everywhere.
A similar computation, using the self-adjointness of the Bergman projection from

Lemma 1.30, shows that a Toeplitz operator Tϕ on L2
a(D) has adjoint Tϕ . See Exer-

cise 2.5.
To determine the adjoint of the integral operator with kernel k acting on L2(X ,µ)

we seek the operator K∗ satisfying 〈K f ,g〉 = 〈 f ,K∗g〉 for all f and g in L2(X ,µ).
Writing the inner product as an integral, and using Fubini’s theorem to interchange
the order of integration, we see that

〈K f ,g〉 =
∫

X
K f (x)g(x)dµ(x)

=
∫

X

(∫
X

k(x,y)g(x)dµ(x)
)

f (y)dµ(y)

=
∫

X

(∫
X

k(x,y)g(x)dµ(x)
)

f (y)dµ(y),

which is equal to ∫
X

f (y)K∗g(y)dµ(y) = 〈 f ,K∗g〉

if we define K∗ to be the integral operator with kernel k∗(x,y) ≡ k(y,x).
We will be mainly interested in adjoints for bounded linear operators from a

Hilbert space H to itself; recall we will write B(H ) for B(H ,H ) in this case.
For simplicity, the next result is stated in this setting, rather than the more general
one of bounded linear operators from H to K .

Proposition 2.13. For A and B in B(H ) we have

(a) A∗∗ = A where A∗∗ = (A∗)∗.
(b) (A+B)∗ = A∗ +B∗.
(c) (αA)∗ = αA∗ for α ∈ C.
(d) (AB)∗ = B∗A∗.

Proof. For (a) we first note that by the definition of the adjoint we have 〈A∗x,y〉 =
〈x,A∗∗y〉 for all x and y in H . Since also 〈Ay,x〉 = 〈y,A∗x〉, taking conjugates we
see that 〈x,Ay〉 = 〈A∗x,y〉. Thus 〈x,A∗∗y〉 = 〈x,Ay〉 for all x and y, or equivalently
〈x,A∗∗y−Ay〉 = 0 for all x and y. This forces A∗∗y = Ay for all y ∈ H , giving (a).
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Part (b) follows from the definition of the adjoint and a straightforward computa-
tion showing that 〈(A+B)x,y〉 = 〈x,(A∗ +B∗)y〉 for all x and y in H . Parts (c) and
(d) are done similarly, and the details are left to the reader. ��

The next result will be fundamentally important to us.

Proposition 2.14. If A ∈ B(H ), then ‖A‖ = ‖A∗‖ and ‖A∗A‖ = ‖A‖2.

Proof. Take any vector h ∈ H with ‖h‖ = 1. We have

‖Ah‖2 = 〈Ah,Ah〉 = 〈h,A∗Ah〉 ≤ ‖A∗Ah‖‖h‖ ≤ ‖A∗A‖ ≤ ‖A∗‖ · ‖A‖ (2.2)

so that ‖A‖ ≤ ‖A∗‖. Applying this together with (a) of the previous proposition
we also have ‖A∗‖ ≤ ‖A∗∗‖ = ‖A‖. Thus ‖A‖ = ‖A∗‖. Using this, and taking the
supremum over all unit vectors h in (2.2), we see that

‖A‖2 = sup{‖Ah‖2 : ‖h‖ = 1} ≤ ‖A∗A‖ ≤ ‖A∗‖ · ‖A‖ = ‖A‖2

and thus equality must hold throughout, yielding ‖A‖2 = ‖A∗A‖ as desired. ��

Let us recap and extend the structure we have on B(H ) when H is any
Hilbert space. First of all, using pointwise-defined vector operations and the “op-
erator norm,” it is a Banach space; this is Proposition 2.3. We define a multipli-
cation on B(H ) which makes it into a complex algebra; that is, a vector space
over C with a multiplication satisfying A(BC) = (AB)C, (A + B)C = AC + BC,
A(B +C) = AB + AC, and α(AB) = (αA)B = A(αB) for all A,B,C ∈ B(H ) and
scalar α . This multiplication AB is just the composition of the linear maps A and
B. Note multiplication is not in general commutative. As we have noted above,
‖AB‖ ≤ ‖A‖‖B‖, and we will see later this makes B(H ) into a Banach algebra, as
will be formally defined in Chapter 5.

We also have an involution ∗ of B(H ); this is a map A �→ A∗ of B(H ) into
itself satisfying (A∗)∗ = A,(AB)∗ = B∗A∗,(αA + B)∗ = αA∗ + B∗ for all A,B in
B(H ) and scalars α . Of course, ∗ is just our adjoint operation. It is connected to the
norm by ‖A∗A‖ = ‖A‖2, the result of Proposition 2.14. As we will see in Chapter 5,
all of these properties together say that B(H ) is a C∗-algebra. The relationship
‖A∗A‖ = ‖A‖2 is called the C∗-identity. Because there is a multiplicative identity
(the identity operator I in B(H )), we will say that B(H ) is a unital C∗-algebra.
Later we will make a study of C∗-algebras in general, and B(H ) will be one of our
primary examples. Since B(H ) is noncommutative (except in the trivial situation
that the dimension of H is 1), we will find it convenient to single out for special
scrutiny the operators in B(H ) which do commute with their adjoints.

Definition 2.15. An operator A in B(H ) is normal if AA∗ = A∗A, and self-adjoint
if A = A∗.

Any multiplication operator Mϕ on L2(X ,µ) is normal, since M∗
ϕ = Mϕ . In Chap-

ter 6, we will see multiplication operators are, in a natural sense, the canonical ex-
amples of normal operators.
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As noted above, we will be primarily interested in adjoints of operators in
B(H ), as opposed to B(H ,K ). One exception is if H and K are Hilbert
spaces and U : H → K is a linear surjection that preserves inner products, mean-
ing 〈Uh1,Uh2〉 = 〈h1,h2〉 for all h1 and h2 in H . Such a map is called a Hilbert
space isomorphism.

Proposition 2.16. If U : H → K is an isomorphism, then U∗U = IH (the identity
on H ) and UU∗ = IK .

Proof. Let h and g be in H . We have

〈U∗Uh,g〉 = 〈Uh,Ug〉 = 〈h,g〉

so that 〈U∗Uh− h,g〉 = 0. This says that for a fixed h, U∗Uh− h is orthogonal to
every vector in H , and hence U∗U = IH .

Now let k be in K . Since U is surjective we may find h with Uh = k. Thus
UU∗k = (UU∗)Uh = Uh = k, which gives the desired statement about UU∗. ��

Definition 2.17. An operator A in B(H ,K ) is said to be invertible if there exists
B in B(K ,H ) with AB = IK and BA = IH . We write B = A−1.

We can rephrase the last proposition as “If U is an isomorphism, then U∗ =U−1.”
An isomorphism between Hilbert spaces is called a unitary operator, although some
authors will restrict this terminology to the setting H = K , and some, as is our
practice, will use it more generally for an isomorphism of one Hilbert space H
onto another, possibly different, Hilbert space K .

Definition 2.18. If H and K are Hilbert spaces and if U : H → K is a bijective
linear map with

〈Uh1,Uh2〉K = 〈h1,h2〉H
for all h1 and h2 in H , then U is said to be a unitary operator.

It is an easy consequence of the polarization identity that a linear and surjective
isometry from H to K is unitary; see Exercise 2.9.

Let us make a few elementary observations about invertibility of operators. First
note that when A ∈ B(H ,K ) is invertible with inverse B, A must be one-to-one,
since if Ah1 = Ah2 we must have h1 = BAh1 = BAh2 = h2. The operator A must
also be onto K , since for any k ∈ K , A(Bk) = k. We’ll discuss a converse to these
statements a bit later. By linearity, A is one-to-one if and only if its kernel

ker A ≡ {h ∈ H : Ah = 0}

consists of the zero vector only.
We can add another property to our list of properties of ∗:

Proposition 2.19. If A is invertible, then so is A∗, and (A∗)−1 = (A−1)∗.
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Proof. When A is invertible we have AA−1 = I = A−1A. Applying the ∗ operation
we have (AA−1)∗ = I∗ = (A−1A)∗; clearly I∗ = I so that by property (d) of Proposi-
tion 2.13 we have (A−1)∗A∗ = I = A∗(A−1)∗, which is the desired conclusion. ��

The next result is the converse to Proposition 2.16.

Proposition 2.20. If U is in B(H ,K ) with U invertible and U−1 = U∗, then U is
an isomorphism.

Proof. We have already observed that U must be surjective, so we only need to
check that it preserves inner products:

〈Uh,Ug〉 = 〈h,U∗Ug〉 = 〈h,U−1Ug〉 = 〈h,g〉

for all h and g in H . ��

A few examples are in order.

Example 2.21. Let S be the forward shift on �2, so that S∗ is the backward shift. We
have S∗S = I, but S is not unitary, since its not surjective. This example points out an
important distinction with the finite-dimensional situation. For a linear map T from
C

n into itself, T is necessarily bijective if it is either one-to-one or surjective.

Example 2.22. Consider a multiplication operator Mϕ on L2(X ,µ) for ϕ in L∞

(X ,µ). When is Mϕ unitary? We want Mϕ M−1
ϕ = Mϕ M∗

ϕ = I. We know that
M∗

ϕ = Mϕ , so that Mϕ is unitary if and only if |ϕ|2 f = f for all f in L2(X ,µ);
that is, if and only if |ϕ| = 1 µ-almost everywhere.

Example 2.23. Let F map L2([0,2π],dt/(2π)) into

�2(Z) ≡ {{an}∞
−∞ :

∞

∑
n=−∞

|an|2 < ∞}

by F( f ) = { f̂ (n)}∞
−∞ where

f̂ (n) = 〈 f ,eint〉 =
∫ 2π

0
f (t)e−int dt

2π
.

Linearity of F follows from linearity of the integral. Since {eint} is an orthonormal
basis for L2([0,2π],dt/(2π)), part (f) of Theorem 1.33 guarantees that F preserves
inner products. Given a sequence {an}∞

−∞ ∈ �2(Z), define f ≡ ∑∞
−∞ aneint . This sum

converges in L2([0,2π]) and F( f ) = {an}∞
−∞. Thus F is surjective, and hence is a

unitary map.

Suppose A ∈ B(H ,K ), and think of A as a mapping from H to K in the
purely set-theoretic sense. From this point of view, A is invertible (as a mapping
between sets) if and only if A is bijective. Its not hard to show (see Exercise 2.7)
that if A is bijective, linearity of A implies that this set-theoretic inverse is a linear
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map from K onto H . However, it is not at all clear that this linear set-theoretic
inverse should be bounded. Remarkably, it is, as we will see in Section 3.3, and
we are left with the extremely useful conclusion that a bounded linear operator in
B(H ,K ) is invertible (in the sense of Definition 2.17) if and only if it is bijective.

We explore this a bit further. Our immediate goal is to show that we can char-
acterize the invertible operators by weakening the requirement that A be onto if we
simultaneously strengthen the requirement that A be one-to-one. The next definition
describes this strengthening.

Definition 2.24. We say that A ∈ B(H ,K ) is bounded below if there is a δ > 0
such that ‖Ah‖ ≥ δ‖h‖ for all h in H .

Clearly, if A is bounded below, its kernel is {0} and hence A is one-to-one. How-
ever, A being one-to-one does not imply that A is bounded below; a diagonal opera-
tor with diagonal sequence {1/n} provides a counterexample.

A weakening of the condition “A maps H onto K ” is the requirement that the
range of A is dense in K ; i.e., the closure of the range of A should be all of K .

Theorem 2.25. If A is a bounded linear operator from a Hilbert space H to a
Hilbert space K , then A is invertible if and only if A is bounded below and has
dense range.

Proof. The “only if” direction is easy: A invertible guarantees that the range of A is
equal to K , and moreover for any h ∈ H ,

‖h‖ = ‖A−1Ah‖ ≤ ‖A−1‖‖Ah‖

so that
‖Ah‖ ≥ 1

‖A−1‖‖h‖

and A is bounded below. The “if” direction is outlined in Exercise 2.12. ��

When we ask why a particular operator fails to be invertible, it is sometimes more
useful to see which of the properties “bounded below” and/or “dense range” it fails
to have, rather than looking at the properties “one-to-one” and “onto.”

2.3 Adjoints of Banach Space Operators

So far we have defined A∗ when A is a bounded linear operator between Hilbert
spaces, and our definition seems closely tied to the inner product structure. We pause
briefly in this section to see if we can define the adjoint of a bounded linear operator
between Banach spaces. For simplicity, we restrict attention to A ∈ B(X), where X
is a Banach space.

Let us begin by rephrasing the defining property of the adjoint of a Hilbert space
operator. If A ∈ B(H ) where H is a Hilbert space, then A∗ is the unique bounded
linear operator on H satisfying



42 2 Operator Theory Basics

〈Ax,y〉 = 〈x,A∗y〉 (2.3)

for all x and y in H . Let the linear functional x → 〈x,y〉 on H (for fixed y) be
denoted by Λy. Thus we can rewrite Equation (2.3) as

Λy(Ax) = ΛA∗y(x).

Even more suggestively, let us think of the map that associates the linear functional
Λy to the linear functional ΛA∗y. We have

ΛA∗y(x) = 〈x,A∗y〉 = 〈Ax,y〉 = Λy(Ax) = (Λy ◦A)(x)

for x and y in H . This suggests we try defining A∗ for A ∈ B(X), where X is now
a Banach space, as the map on the dual space X∗ that sends Λ ∈ X∗ to Λ ◦A:

A∗(Λ) = Λ ◦A.

It is easy to see that A∗(Λ) is in X∗ and that the map A∗ : X∗ → X∗ is linear.
If we adopt this as the definition of A∗ when A is a bounded linear operator on

the Banach space X , how does it compare with our earlier definition in the case that
X is actually a Hilbert space H ? To answer this, let C : H →H ∗ be the surjective
conjugate linear isometry sending y to Λy; “conjugate linear” referring to the fact
that C(αy) = αC(y) for scalars α . We claim that CA∗

HS = A∗
BSC, as schematically

illustrated below. Here the subscripts HS and BS indicate we are using the adjoint
definition in, respectively, the Hilbert space setting or Banach space setting, so that
A∗

HS acts on H while A∗
BS acts on H ∗.

�
A∗

BS

�A∗
HS

H ∗

H

H ∗

H

� �

CC

This is verified by observing that CA∗
HSx is the bounded linear functional on H

given as inner product with A∗
HSx, that is, the bounded linear functional taking y ∈

H to 〈y,A∗
HSx〉= 〈Ay,x〉. On the other hand, A∗

BSCx is the bounded linear functional
on H taking y to

[A∗
BS(Cx)](y) = Cx(Ay) = 〈Ay,x〉.

The conjugate linearity of C means that while (αAHS)∗ = αA∗
HS, (αA)∗BS = αA∗

BS.
It is pleasant to import the Hilbert space notation 〈·, ·〉 into the Banach space

setting. For X a Banach space, denote a generic element of X∗ by x∗ and write

x∗(x) ≡ 〈x,x∗〉.

Notice, then, that if A is in B(X) and A∗ is in B(X∗), we have 〈Ax,x∗〉 = 〈x,A∗x∗〉
since both are equal to x∗(Ax).
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Example 2.26. Consider the Banach space X = C[0,1] in the supremum norm. As
in Exercise 2.3, let ϕ be a continuous map of [0,1] into [0,1] and define the bounded
linear operator Cϕ on X by Cϕ( f ) = f ◦ϕ . Fix a point p ∈ [0,1] and let Λp be the
bounded linear functional of evaluation at p: Λp( f ) = f (p) for all f ∈ X . We seek
to identify C∗

ϕ(Λp) as an element of X∗. We have

C∗
ϕ(Λp)( f ) = Λp(Cϕ( f )) = Λp( f ◦ϕ) = f (ϕ(p)) = Λϕ(p)( f )

for every f in X . Thus C∗
ϕ(Λp) = Λϕ(p). In our “inner product” notation the relevant

calculation looks like

〈 f ,C∗
ϕ(Λp)〉 = 〈 f ◦ϕ,Λp〉 = f (ϕ(p)) = 〈 f ,Λϕ(p)〉.

The concept of the adjoint operator had its beginnings in the work of Riesz
in 1909 for operators on Lp[a,b]. Riesz used the terminology “Transponierte” or
“transposed operator.” By 1930 the idea had been extended by Banach and Juliusz
Schauder to the general setting of a bounded linear operator between Banach spaces,
with the terms “opération adjointe” and “opération conjuguée” being introduced.

2.4 Exercises

2.1. Let X and Y be normed linear spaces, and let B(X ,Y ) denote the collection of
all bounded linear operators from X into Y endowed with the operator norm. Show
that B(X ,Y ) is a normed linear space, and B(X ,Y ) is a Banach space whenever Y
is a Banach space. The vector operations in B(X ,Y ) are to be defined pointwise:
(A+B)(x) = Ax+Bx, and (αA)(x) = α(Ax).

2.2. Suppose M is a dense subspace in a Banach space X (meaning that the closure
of M is all of X) and suppose that T : M → Y is linear, where Y is a Banach space,
with ‖T m‖Y ≤ K‖m‖X for some K < ∞ and all m ∈ M. Show that T extends, in a
unique way, to a bounded linear operator from X into Y .

2.3. Let X = [0,1] or more generally any compact Hausdorff space, and let Y =
C(X), the Banach space of continuous, complex-valued functions on X , in the supre-
mum norm. For any continuous function ϕ mapping X into itself, define the com-
position operator Cϕ on Y by Cϕ( f ) = f ◦ϕ . Prove that Cϕ is a bounded linear
operator on Y . For which ϕ is Cϕ invertible?

2.4. Compute the norm of the multiplication operator Mz (equivalently the Toeplitz
operator Tz) on L2

a(D).

2.5. Show that the Toeplitz operator with symbol ϕ acting on the Bergman space
L2

a(D) has adjoint Tϕ .
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2.6. Suppose T is a bounded linear operator on a Hilbert space H and suppose
further that the range of T is one-dimensional. Show that there are vectors x and y
in H so that

T z = 〈z,x〉y
for all z ∈ H . This operator is sometimes written as y⊗ x. Identify T ∗ in this case.

2.7. Show that if T : X → Y is a bijective linear map, then the set-theoretic inverse
T−1 is also linear.

2.8.(a) Suppose that h is a nonzero vector in a Hilbert space H . Show that T ∈
B(H ) attains its norm at h (meaning ‖T h‖ = ‖T‖‖h‖) if and only if T ∗T h =
‖T‖2h.

(b) Extend (a) to the case that T is a bounded linear operator from a Hilbert space
H to a Hilbert space K , and then use this result to provide another proof of
Proposition 2.16.

2.9. Show that a linear surjective isometry from one Hilbert space H to another
Hilbert space K is unitary.

2.10. Let {an}∞
1 be a bounded sequence of complex numbers. Fix an orthonormal

basis {gn} for �2. The unique linear operator W satisfying W (gn) = αngn+1 for all n
is called a weighted shift.

(a) Find ‖W‖ and W ∗.
(b) Suppose {an} and {bn} are bounded sequences with |an| = |bn| for all n. Let W

and V be the associated weighted shifts. Show that there is a unitary U : �2 → �2

with U−1WU = V . We say that W and V are unitarily equivalent.

2.11.(a) Show that if ∑∞
n=0 |an|2(n!)2 < ∞, then the power series ∑∞

n=0 anzn con-
verges for all z ∈ C and hence f (z) ≡ ∑∞

n=0 anzn is analytic in C. Define the
vector space of entire functions

V ≡ { f =
∞

∑
n=0

anzn :
∞

∑
n=0

|an|2(n!)2 < ∞}

and put an inner product on V by setting

〈 f ,g〉 =
∞

∑
n=0

anbn(n!)2

when f (z) = ∑∞
n=0 anzn and g(z) = ∑∞

n=0 bnzn. Show that V is a Hilbert space.
(b) Let U : H2 → V by

U f =
∞

∑
n=0

an

n!
zn

when f (z) = ∑∞
n=0 anzn is in H2 (so that ∑∞

n=0 |an|2 < ∞; see Example 1.7). Re-
calling that the power series coefficients an of f are given by
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an =
f (n)(0)

n!

show that U is a unitary map.
(c) Define a linear map D on V by D f = f ′, and show that D is a bounded linear

operator on V .
(d) Let B : H2 → H2 be defined by

B f =
f − f (0)

z
.

Show that B is a bounded linear operator on H2 and D = UBU−1, so that D and
B are unitarily equivalent.

2.12. Suppose that A ∈ B(H ,K ) where A is bounded below and has dense range
in K . Show that A is invertible. Hint: Start by showing that if A is bounded below,
then the range of A is closed.

2.13. Suppose An ∈ B(Hn) for n = 1,2,3, . . ., where each Hn is a Hilbert space.
Assume further that supn ‖An‖ < ∞. Define A on H ≡ ∑⊕Hn by

A(h) = A(h1,h2, . . .) = (Ah1,Ah2, . . .).

Show that A ∈ B(H ) and ‖A‖ = supn ‖An‖. We call A the direct sum of the opera-
tors {An} and denote it ∑⊕An.

2.14. Suppose that u is a bounded sesquilinear form on H ×H for some Hilbert
space H .

(a) Define the quadratic form û : H → C by û(h) = u(h,h). Show the polarization
identity

u(h,g) = û
(

1
2
(h+g)

)
− û

(
1
2
(h−g)

)
+ iû

(
1
2
(h+ ig)

)
− iû

(
1
2
(h− ig)

)

for all h and g in H .
(b) Show that if u1 and u2 are bounded sesquilinear forms on H × H with

u1(h,h) = u2(h,h) for all h in H then u1 and u2 agree on H ×H .

2.15. Recall the space C1[0,1] defined by

C1([0,1]) ≡ { f ∈C[0,1] : f ′ exists and is continuous on [0,1]}.

(a) Recall from Exercise 1.3 of Chapter 1 that C1[0,1] is a Banach space if we norm
it by

‖ f‖C1 = max{| f (x)| : 0 ≤ x ≤ 1}+max{| f ′(x)| : 0 ≤ x ≤ 1}.

Show that for each x ∈ [0,1], the functional
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ev1
x( f ) = f ′(x)

is a bounded linear functional on (C1[0,1],‖ · ‖C1).
(b) Fix ϕ : [0,1] → [0,1] in C1[0,1] and define Cϕ on C1[0,1] by Cϕ( f ) = f ◦ϕ .

Show that Cϕ is a bounded linear operator on C1[0,1]. What is C∗
ϕ(ev1

x)?

2.16. For an operator T in B(H ), where H is a Hilbert space, show that ker T =
(ran T ∗)⊥, where ker T = {h : T h = 0} and ran T ∗ ≡ range T ∗ = {T ∗h : h ∈ H }.

2.17. If T is a bounded and self-adjoint operator on a Hilbert space and T 2 = T ,
show that T is the orthogonal projection onto its range.

2.18. Suppose that PM1 and PM2 are orthogonal projections onto the closed subspaces
M1 and M2 of a Hilbert space.

(a) Show that PM1 PM2 is an orthogonal projection if and only if PM1PM2 = PM2 PM1 .
(b) If the condition in (a) is satisfied so that PM1PM2 = PM for some closed subspace

M, identify M.

2.19. Show that a diagonal operator on a Hilbert space is an orthogonal projection
if and only if its diagonal consists of 0’s and 1’s.

2.20. Fix vectors h1,h2, . . . ,hn in a Hilbert space H .

(a) Define B : C
n → H by

B(z1,z2, . . . ,zn) =
n

∑
j=1

z jh j.

Calculate B∗ : H → C
n.

(b) What is the relationship between the operator B in (a), the n×n matrix A = [ai j]
with ai j = 〈h j,hi〉, and the operator C : H → H given by

Ch =
n

∑
j=1

〈h,h j〉h j?

(c) Show that h1,h2, . . . ,hn are linearly independent in H if and only if the matrix
A is invertible.

2.21. Suppose that T is an operator in B(H ) for some Hilbert space H and sup-
pose that T = T−1 and T = T ∗. Show that the sets

H1 ≡ {h+T h : h ∈ H }

and
H2 ≡ {h−T h : h ∈ H }

are closed subspaces of H with H = H1⊕H2, and that the restriction of T to H1
is the identity I while the restriction of T to H2 is −I.

Conversely, show that if H is the direct sum of two subspaces H1 and H2 with
T (h) = h for h ∈ H1 and T (h) = −h for h ∈ H2, then T = T−1 and T ∗ = T .
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2.22. If A ∈ B(H ) and h ∈ H , then

{h,Ah,A2h,A3h, . . .}

is called the orbit of h under A. When the orbit of h spans H — that is, when the set
of linear combinations of vectors in the orbit of h is dense in H —we call h a cyclic
vector for A, and say that A is a cyclic operator.

(a) Show that the constant function 1 is a cyclic vector for Mz on L2
a(D).

(b) Consider the operator from C
3 to C

3 with matrix

A =

⎡
⎣2 0 0

0 2 0
0 0 1

⎤
⎦ .

Show that this operator has no cyclic vector.

Cyclic operators will be studied further in Chapter 6.

2.23. Thus far, the only topology we have considered on B(H ) for H a Hilbert
space is the topology that comes from the operator norm; this is called the norm
topology or the uniform operator topology. However, there are other useful topolo-
gies on B(H ), and in this problem we introduce two of them by discussing se-
quential convergence in two new senses.
Definition. Given {Tn} in B(H ), we say Tn → T ∈ B(H ) in the strong operator
topology if

Tnh → T h

for each h ∈ H . This is abbreviated Tn → T (SOT).
We say Tn converges to T in the weak operator topology, denoted Tn → T (WOT),

if
〈Tnh,g〉 → 〈T h,g〉

for each fixed h,g in H .

(a) Show that if S is the forward shift operator on �2, then Sn → 0 (WOT), but Sn

does not converge to 0 in either the norm or strong operator topology.
(b) If Pn : �2 → �2 by

Pn(x1,x2, . . .) = (0,0, . . . ,xn+1,xn+2, . . .)

show that Pn → 0 (SOT), but not in the norm topology.
(c) Show that if Tn → T (SOT) for Tn,T ∈ B(H ), then Tn → T (WOT).
(d) Is the mapping from B(H )→C which sends T to ‖T‖ continuous if we use the

strong operator topology (respectively, the weak operator topology) on B(H )?



Chapter 3
The Big Three

In linear spaces with a suitable topology, one encounters three
far-reaching principles concerning continuous linear
transformations.
N. Dunford and J. Schwartz ([12], p. 49).

In this chapter we will look at several core results of functional analysis. Two of
these, the principle of uniform boundedness and the open mapping theorem (as well
as their close cousins, the Banach–Steinhaus theorem and the closed graph theorem)
are Banach space results. The third, the Hahn–Banach theorem, makes no use of
completeness and takes place in a normed linear space (or even more generally). All
three of these results are ubiquitous in functional analysis.

We will look at the Hahn–Banach theorem first, and begin by reviewing Zorn’s
lemma, which is sometimes called the “analysts’ version of the axiom of choice.”
We begin with some needed terminology. A partial order on a set X is a relation,
written generically as ≤, satisfying the following properties for all a,b,c ∈ X :

(a) transitivity: if a ≤ b and b ≤ c then a ≤ c,
(b) reflexivity: a ≤ a, and
(c) anti-symmetry: if a ≤ b and b ≤ a then a = b.

If for every pair a,b in X we either have a ≤ b or b ≤ a, then X is said to be
totally ordered by ≤. Two simple examples to illustrate these concepts are the totally
ordered set consisting of the real line with the usual ≤ relationship, and, for any set
X , any collection of subsets of X partially ordered by set inclusion ⊆. Note that the
latter need not be a total ordering, for example when the cardinality of X is at least
two, and P(X) is the set of all subsets of X , then (P(X),⊆) is a partial ordering
which is not a total ordering.

As further examples, consider the set N×N of ordered pairs of positive integers
and two relations ≤1 and ≤2 defined as follows. Say that (a,b) ≤1 (x,y) if a is
strictly less than x or if a = x and b is less than or equal to y (in the usual sense
on N). This is sometimes called lexicographical ordering, by its analogy with the
ordering of words in a dictionary. For the second relation, say (a,b) ≤2 (x,y) if a is
less than or equal to x, and b is less than or equal to y, in the usual sense of inequality
on N. Clearly ≤1 is a total ordering, while ≤2 is a partial ordering which is not a
total ordering.

B.D. MacCluer, Elementary Functional Analysis, DOI 10.1007/978-0-387-85529-5 3, 49
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When a set X is partially ordered by ≤ and Y is a subset of X , we call an element
p ∈ X an upper bound for Y if y ≤ p for all y ∈ Y . An element m in X for which
m ≤ x implies m = x is called a maximal element of X .

We are ready to state Zorn’s lemma, which is indispensable in functional analy-
sis. It will be taken as an axiom of set theory; alternatively one can derive it from
the axiom of choice, which says that the Cartesian product of nonempty sets is
nonempty.

Lemma 3.1 (Zorn’s Lemma). If X is a nonempty partially ordered set with the
property that every totally ordered subset of X has an upper bound in X, then X has
a maximal element.

A good way to see a standard and completely straightforward application of
Zorn’s lemma is to use it to prove that any orthonormal set in a Hilbert space can
be extended to an orthonormal basis, so in particular every Hilbert space has an or-
thonormal basis. See Exercise 3.1. The proof of the Hahn–Banach theorem in the
next section will provide another example of an application of Zorn’s lemma.

3.1 The Hahn–Banach Theorem

The Hahn–Banach theorem deals with extending continuous linear functionals from
a subspace of a normed linear space to the whole space. Completeness of the space
plays no role, so this is a result about normed linear spaces in general. This is one
of the few places in the subject where it is helpful to first look at real vector spaces
(that is, a vector space over R), and prove it in that context, before extending the
argument to cover the case of a complex vector space. This extension, while not
difficult, is not trivial either; historically the real case was proved nearly ten years
before its extension to complex scalars.

Theorem 3.2 (Hahn–Banach Theorem). Let X be a normed linear space over F =
R or C, and suppose Y is a (not necessarily closed) proper subspace of X. If ϕ0 :
Y → F is a bounded linear functional, then there is a bounded linear functional
ϕ : X → F with the restriction of ϕ to Y equal to ϕ0 (so that ϕ is an extension of ϕ0)
and ‖ϕ‖ = ‖ϕ0‖ (so that this extension is norm-preserving).

It is the norm-preserving part of the conclusion that gives the result its power.
Recall that Exercise 1.22 in Chapter 1 showed how to extend linear functionals
on subspaces of Hilbert spaces, using simple Hilbert space techniques, in a norm-
preserving way. Without Hilbert space machinery at our disposal, we will have to
work a bit harder.

Before we look at the proof of the Hahn–Banach theorem, we give some applica-
tions. For the first, suppose X is a normed linear space which is not just {0}. Could
X∗, the dual space of X , consist of just the zero functional?

Corollary 3.3. Let X �= {0} be a normed linear space. Given x0 �= 0 in X, there is a
bounded linear functional ϕ on X of norm 1 with ϕ(x0) = ‖x0‖.
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Proof. Set M = {αx0 : α ∈F}, a subspace of X . Define ϕ on M by ϕ(αx0) = α‖x0‖.
It is easy to see that ϕ is a bounded linear functional on M with norm 1 and ϕ(x0) =
‖x0‖. By the Hahn–Banach theorem we can extend ϕ to all of X without increasing
its norm. ��

The next corollary shows that the dual of a nontrivial normed linear space must
be rich enough to “separate the points” of X .

Corollary 3.4. Suppose X �= {0} is a normed linear space. Given x1 �= x2 we may
find a bounded linear functional ϕ on X with ϕ(x1) �= ϕ(x2).

Proof. Apply Corollary 3.3 to x0 = x1 − x2. ��

Corollary 3.5. Suppose x0 is an element of a normed linear space X. We have

‖x0‖ = sup{|ϕ(x0)| : ϕ ∈ X∗,‖ϕ‖ = 1},

and moreover this supremum is attained.

Proof. The result if trivially true if x0 = 0. In general, we have |ϕ(x0)| ≤ ‖x0‖ if
‖ϕ‖ = 1, so the supremum is at most ‖x0‖. On the other hand, by Corollary 3.3
there exists ϕ̂ ∈ X∗ with ‖ϕ̂‖ = 1 and ϕ̂(x0) = ‖x0‖, so the supremum must in fact
be equal to ‖x0‖, and the supremum is attained (by ϕ̂). ��

See Exercise 3.5 for a concrete application of Corollary 3.5 in the particular
normed linear space Lp(X ,M,µ), 1 ≤ p < ∞.

Note the symmetry in the statements: For ϕ ∈ X∗,

‖ϕ‖ = sup{|ϕ(x)| : x ∈ X ,‖x‖ = 1},

and for x ∈ X ,
‖x‖ = sup{|ϕ(x)| : ϕ ∈ X∗,‖ϕ‖ = 1}.

In the second line (but not in general in the first, although see Corollary 3.7 below),
“sup” can be replaced by “max.”

The Hahn–Banach theorem gives a means for determining the points that lie in
the closure of a linear subspace of a normed linear space. The proof of the next
result is left to the reader as Exercise 3.8.

Corollary 3.6. Suppose that X is a normed linear space, x0 ∈ X and M is a
(not necessarily closed) subspace in X. Suppose that d ≡ dist(x0,M) > 0 where
dist(x0,M) = inf{‖x0 − y‖ : y ∈ M}. There exists ϕ ∈ X∗ with ϕ(x0) = 1, ϕ = 0 on
M, and ‖ϕ‖ = 1/d. In particular, x0 is in the closure of M if and only if there is no
bounded linear functional on X that is 0 on M and nonzero at x0.

When X is a Banach space, or even just a normed linear space, we know from
Exercise 2.1 in Chapter 2 that its dual X∗ is a Banach space, so that it too has a dual
space (X∗)∗ which we will write X∗∗. If x0 ∈ X we can define what will constitute
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an element of X∗∗, call it x∗∗0 , by setting x∗∗0 (ϕ) = ϕ(x0), for any ϕ in X∗. It is easy
to see that x∗∗0 as just defined is a linear functional on X∗ and moreover,

|x∗∗0 (ϕ)| = |ϕ(x0)| ≤ ‖ϕ‖‖x0‖

so that x∗∗0 is bounded with norm at most ‖x0‖. We claim that this natural map from
X to X∗∗ sending x0 to x∗∗0 is a linear isometry of X into X∗∗. The interesting piece
that still needs verification is the “isometry” part of this statement. We have

‖x∗∗0 ‖ = sup{|x∗∗0 (ϕ)| : ϕ ∈ X∗,‖ϕ‖ = 1}
= sup{|ϕ(x0)| : ϕ ∈ X∗,‖ϕ‖ = 1}
= ‖x0‖

where we have used the definition of the norm on X∗∗, the definition of x∗∗0 , and
Corollary 3.5 for each of the three equalities, respectively. If this natural map x0 →
x∗∗0 is onto X∗∗, then X is said to be reflexive, and it gives a isometric isomorphism of
X with X∗∗. In this context, “isomorphism” means a continuous linear bijection with
continuous inverse. If X is reflexive, it must be a Banach space since X∗∗ is a Banach
space. Note that the definition of “reflexive” requires that a particular mapping of
X into X∗∗ (the “natural map”) be an isometric isomorphism, not simply that there
exist some isometric isomorphism of X and X∗∗. The latter surprisingly turns out
to be a strictly weaker assumption; this was shown by R.C. James in [23]. As an
immediate consequence of the definition of a reflexive space and Corollary 3.5 we
see that bounded linear functionals on reflexive Banach spaces attain their norm;
this is the content of the next result, whose proof is left to the reader.

Corollary 3.7. Suppose that X is a reflexive Banach space. Given ϕ ∈ X∗, there
exists a unit vector x0 in X such that |ϕ(x0)| = ‖ϕ‖.

This corollary is sometimes useful for showing a particular Banach space is not
reflexive; see, for example, Exercise 3.34. The converse to Corollary 3.7 is also true:
In any nonreflexive Banach space there is a bounded linear functional which does
not attain its norm on the unit sphere. This result is also due to James [24].

We are going to prove Theorem 3.2 in the real scalar case first, that is, we will
assume in the statement of the theorem that F = R. There are two key parts to the
proof: the “one-step extension,” which basically extends a linear functional, in a
norm-preserving way, from a linear manifold to the span of that manifold and a
single additional vector; and a Zorn’s lemma argument.

Proof (Theorem 3.2, real case). If ‖ϕ0‖ = 0, simply set ϕ ≡ 0 and we are done.
Thus we are interested in the case ‖ϕ0‖ �= 0, and we may assume, without loss of
generality, that ‖ϕ0‖ = 1, which we do. Choose a vector z which lies in X but not in
Y and let

Y1 ≡ {y+αz : y ∈ Y and α ∈ R} = {αz− y : y ∈ Y and α ∈ R},
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so that Y1 is the span of Y and z. For any choice of a fixed real number c, if we
define ϕ1 on Y1 by ϕ1(αz− y) = αc−ϕ0(y), then ϕ1 is an extension of ϕ0 to a
linear functional on Y1. There are a few details to be checked here, starting with the
observation that ϕ1 is well-defined (once c is chosen) and linear. Well-definedness
follows from uniqueness of representation for every vector in Y1 in the form αz− y
with y ∈ Y and α ∈ R. Once these easy issues are attended to (we leave the details
to the reader), the issue becomes whether we can choose c so that ‖ϕ1‖= ‖ϕ0‖= 1.
In other words, we want to choose c so that

|αc−ϕ0(y)| ≤ ‖αz− y‖ (3.1)

for all y in Y and all scalars α in R. Now we want (3.1) to hold for all y ∈Y and real
scalars α , so it can be rewritten in an equivalent manner by dividing by |α| (since
the α = 0 case is trivially true). Doing this, we see that the condition (3.1) we wish
to satisfy is equivalent to the condition

|c−ϕ0(α−1y)| ≤ ‖z−α−1y‖

for all y ∈ Y and real α �= 0, or more simply, to the condition

|c−ϕ0(y)| ≤ ‖z− y‖ (3.2)

for all y ∈Y . This last inequality will hold for some choice of c precisely when there
is a choice of c satisfying

ϕ0(y)−‖y− z‖ ≤ c ≤ ϕ0(y)+‖y− z‖ (3.3)

for all y ∈ Y . If we denote the left-hand side, ϕ0(y)− ‖y − z‖, by A(y) and the
right-hand side, ϕ0(y)+ ‖y− z‖, by B(y), a real c of the desired type can be found
provided ⋂

y∈Y

[A(y),B(y)]

is nonempty (and if it is nonempty, any c that lies in this intersection will do).
We claim that ⋂

y∈Y

[A(y),B(y)]

is nonempty precisely when A(y) ≤ B(v) for all y and v in Y . One direction of this
claim is clear: If c∈ [A(y),B(y)] for all y∈Y , then c≥A(y) for all y and c≤B(v) for
all v. Conversely, if A(y) ≤ B(v) for all choices of y and v, then a ≡ supy∈Y A(y) ≤
infv∈Y B(v) ≡ b, and any c in the range a ≤ c ≤ b will lie in [A(y),B(y)] for all y.
This verifies the claim, and we can create a norm-preserving extension if

ϕ0(y)−‖y− z‖ ≤ ϕ0(v)+‖v− z‖ (3.4)

for all y and v in Y . We have
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ϕ0(y)−ϕ0(v) = ϕ0(y− v) ≤ ‖y− v‖ ≤ ‖y− z‖+‖z− v‖,

where we have used the assumption that ϕ0 has norm 1. Rearranging this computa-
tion gives (3.4), and we conclude that there is a norm-preserving extension ϕ1 of ϕ0
from Y to Y1.

To finish the proof, we use Zorn’s lemma. Let P be the collection of all pairs
(Y ′,ϕ ′) where Y ′ is a (not necessarily closed) subspace containing Y and ϕ : Y ′ →R

is a linear functional extending ϕ0 : Y → R with ‖ϕ ′‖ = ‖ϕ0‖ = 1. Partially order
P by (Y ′,ϕ ′) ≤ (Y ′′,ϕ ′′) if Y ′ ⊆ Y ′′ and the restriction of ϕ ′′ to Y ′ is ϕ ′. Suppose
C ≡ {(Yβ ,ϕβ ) : β ∈ I } is a totally ordered subset of P . Set N ≡ ∪βYβ . Since C
is totally ordered, N is a subspace. Define ϕ̃ on N by ϕ̃(y) = ϕβ (y) if y ∈ Yβ ; note
that ϕ̃ is well-defined since C is totally ordered, and is linear. Moreover, (N, ϕ̃) is
in P; in particular there is an β so that

|ϕ̃(y)| = |ϕβ (y)| ≤ ‖y‖

so ‖ϕ̃‖ ≤ 1. We see that (N, ϕ̃) is an upper bound for C , since (Yβ ,ϕβ )≤ (N, ϕ̃) for
all β . By Zorn’s lemma, P has a maximal element, which we denote (X∞,ϕ∞). We
must have X∞ = X , else we could do the one-step extension process to extend to the
span of X∞ and x0, where x0 is in X but not in X∞, contradicting the maximality of
(X∞,ϕ∞). Once we know that X∞ = X , we have the desired norm-preserving exten-
sion ϕ∞ of ϕ0 to all of X . ��

In Exercise 3.4, the reader can work through an application of the one-step ex-
tension process in a concrete setting.

The extension of the proof of the Hahn–Banach theorem from the real case to the
complex case is outlined in Exercises 3.2 and 3.3. While it is not hard, historically
there was a span of nearly ten years between the work on the real case by Banach and
the extension to the complex case by H. Bohnenblust and A. Sobczyk in 1938. Per-
haps not coincidently, Banach’s esteemed 1932 treatise Opérations Linéaires deals
only with real Banach spaces. In the particular setting of X = Lp the complex case
appeared in 1936 in the work of F. Murray; see also the comment in Exercise 3.3 on
an earlier contribution by H. Löwig. The work of Bohenblust and Sobczyk may be
the first place that the result is referred to as the “Hahn–Banach Theorem.”

In reality, it would be more accurate to credit Eduard Helly with the first proof
of a Hahn–Banach type theorem for work dating from 1912. Helly was working on
a problem, posed by Riesz, which he reformulated as a problem about extending a
bounded linear functional on a subspace of C[a,b]. His argument had a thoroughly
modern flavor, and was quite similar to that later used independently by Hahn (1927)
and Banach (1929). A key feature was the one-step extension process, and in par-
ticular the inequalities of (3.3) and (3.4) for the special case of C[a,b] appears in
his work. A slightly later paper of Helly’s [22], published in 1921, gives the Hahn–
Banach theorem in the context of sequence spaces.

One possible explanation for the lack of recognition Helly received for this
(and other mathematical contributions he made) might be found in some of the
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non-mathematical details of his life (see [20]). An Austrian, he received his Ph.D. in
1907. He enlisted in the army at the start of World War I, and was wounded in 1915,
suffering serious heart and lung injuries. He became a Russian prisoner of war, and
was imprisoned in Siberia from 1915–1917. In part due to the civil war in Russia in
1918, he was not able to return to his home of Vienna until late in 1920. He received
his Habilitation degree from the University of Vienna in 1921, but was unable to se-
cure an academic position. He worked as a bank clerk (until the bank failed in 1929)
and in an insurance company, while trying to remain active in mathematics. Helly—
who was Jewish—emigrated to the United States in 1938, as Austria was absorbed
by the Third Reich. He held positions at several junior colleges in New Jersey until
he was offered a Professorship at the Illinois Institute of Technology. Unfortunately,
shortly after this he died of a heart attack, at the age of 59. Undoubtedly his earlier
war injuries contributed to this premature death.

3.2 Principle of Uniform Boundedness

Several important problems in Banach space theory come down to the rather
pedestrian-seeming problem of showing that a set is “large” in the sense that it has
nonempty interior. Recall that the interior of a set A in a metric space (M,d) is the
set of points a ∈ A for which there exists δ > 0 with B(a,δ ) ≡ {m ∈ M : d(a,m) <
δ} ⊆ A. As an illustration of this general principle, let us characterize boundedness
of a linear operator in terms of a particular set having nonempty interior.

Proposition 3.8. Suppose X and Y are normed linear spaces and T : X → Y is lin-
ear. Then T is bounded if and only if T−1({y ∈ Y : ‖y‖ < 1}), the preimage of the
open unit ball in Y under T , has nonempty interior.

Proof. First suppose T is bounded with ‖T‖= M. If x ∈ B(0,1/M) we have ‖T x‖<
1, and thus B(0,1/M) is contained in the preimage of the open unit ball of Y under
T .

The more interesting direction is the “if” direction. For this, suppose T is lin-
ear and T−1{y : ‖y‖Y < 1} contains x0 as an interior point, say B(x0,ε) lies in the
preimage of the open unit ball in Y under T . Fix ε ′,0 < ε ′ < ε , and consider x with
‖x‖ ≤ ε ′. Since x+ x0 ∈ B(x0,ε), we have

‖T x‖ = ‖T (x+ x0 − x0)‖ = ‖T (x+ x0)−T (x0)‖
≤ ‖T (x+ x0)‖+‖T x0‖
≤ 1+‖T (x0)‖ ≡ M.

Thus for any unit vector v in X ,

‖T v‖ =
∥∥∥∥T
(

1
ε ′

ε ′v
)∥∥∥∥≤ M

ε ′

and T is bounded. ��
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So when does a set have nonempty interior? In a complete metric space (thus in
particular in a Banach space) the Baire category theorem sheds some light on this.

Definition 3.9. A set S in a metric space M is nowhere dense if its closure has empty
interior.

Some examples of nowhere dense sets are the integers Z in the real line R, or the
Cantor set in [0,1] (it is a closed set containing no open intervals). By contrast, the
rationals are not a nowhere dense set in R.

The next result is the Baire category theorem. Its roots are in René Baire’s 1899
dissertation, where it was shown that R

n is not a countable union of nowhere dense
sets (the case n = 1 was actually proved two years earlier by W. Osgood). One can
think of this as a topological tool; it will play a role in the proof of the principle of
uniform boundedness of this section, and the proof of the open mapping theorem in
the next.

Theorem 3.10 (Baire Category Theorem). A complete metric space is not the
union of a countable number of nowhere dense sets.

Proof. Let M be a complete metric space. Suppose, for a contradiction, that M is
the countable union of sets An that are nowhere dense. We will construct a Cauchy
sequence in M with no limit point in M.

Since A1 is nowhere dense, we may find an open ball B1 with B1 ∩A1 = /0, where
A1 denotes the closure of A1. Clearly, we can choose the radius of this ball B1 to be
less than 1. Since A2 has empty interior, it doesn’t contain B1 and (M\A2)∩B1 is a
nonempty open set. Thus we may find an open ball B2 whose closure is contained
in B1 such that B2 ∩A2 = /0 and such that the radius of B2 is less than 1/2. Continue
inductively, so that at the nth stage we produce an open ball Bn whose closure is
contained in Bn−1, such that Bn ∩An = /0 and the radius of Bn is less than 1/n; we
are using the hypothesis that An has no interior point and thus Bn−1 is not contained
in An. Note that the closed balls Bn form a nested sequence of closed sets, whose
diameters tend to 0, in our complete metric space.

Let xn be the center of the ball Bn. It is easy to see that {xn} forms a Cauchy
sequence in M: When m,n ≥ N, the points xm and xn lie in the ball BN and hence
d(xm,xn) < 2/N, which tends to 0 as N → ∞. This Cauchy sequence then converges
to some point x ∈ M. We claim that x is not in A j for all j ≥ 1, a contradiction to the
assumption that M = ∪∞

j=1A j. To verify this claim, note that if x ∈ A j, then x is not
in B j (since B j ∩A j = /0), and hence not in Bk for all k ≥ j + 1. However, we have
xn ∈ B j+1 for all n ≥ j +1 and therefore x is in B j+1 ⊆ B j, a contradiction. ��

Thus the Baire category theorem says that if a complete metric space X is written
as a countable union X =∪∞

1 An, at least one of the sets An must be “big” in the sense
that its closure has nonempty interior. The proof of the next result, the principle of
uniform boundedness, illustrates this. Informally, this theorem says that a pointwise
bounded family of operators is uniformly bounded.
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Theorem 3.11 (Principle of Uniform Boundedness). Suppose X is a Banach
space and F is a family of bounded linear operators from X to a normed linear
space Y . If, for every x ∈ X,

sup{‖T x‖ : T ∈ F} < ∞

then
sup{‖T‖ : T ∈ F} < ∞.

Proof. Define An ≡ {x ∈ X : ‖T x‖ ≤ n for all T ∈ F}. The hypothesis says that
each x ∈ X is in some An, so that X = ∪∞

n=1An. By the Baire category theorem, for
some n, An has nonempty interior. To make use of this we first claim that each An is
closed. To see this, suppose xm is in An for m = 1,2, . . . and that xm → x. For each
T ∈ F , ‖T xm‖ ≤ n, while continuity of T guarantees that ‖T xm‖ → ‖T x‖. Hence
‖T x‖ ≤ n for each T ∈ F and x ∈ An.

So in fact, for some fixed n, An has an interior point, which we will denote x0. Let
ε > 0 be chosen so that B(x0,ε) ⊆ An. The positive number ε , as well as the integer
n, are fixed values at this point. If ‖x‖ ≤ ε , then for any T ∈ F ,

‖T x‖ = ‖T (x+ x0)−T x0‖ ≤ ‖T (x+ x0)‖+‖T x0‖ ≤ n+n.

From this it follows that for any unit vector v,

‖T v‖ =
1
ε
‖T (εv)‖ ≤ 2n

ε

and thus
sup{‖T‖ : T ∈ F} ≤ 2n

ε
.

��

Note that we can restate the principle of uniform boundedness as follows: either
sup{‖T‖ : T ∈ F} < ∞, or there exists x ∈ X such that sup{‖T x‖ : T ∈ F} = ∞.

As with the Hahn–Banach theorem, Helly deserves more credit than he has re-
ceived for his contributions to the uniform boundedness principle. He gave the first
proof, for C[a,b], but by methods which extend to general Banach spaces. Banach
and Steinhaus’s original proof depended on a technique called the “gliding hump”
method; this was replaced by the Baire category argument after S. Saks pointed out
the possibility of using this approach. The original gliding hump argument is out-
lined in Exercise 3.15. A precursor to the principle of uniform boundedness, in the
setting of �2, appeared in work of E. Hellinger and O. Toeplitz in 1910.

A close cousin of the principle of uniform boundedness is the Banach–Steinhaus
theorem, which we look at next.

Theorem 3.12 (Banach–Steinhaus Theorem). Suppose {Tn} is a sequence of
bounded linear operators from a Banach space X to a Banach space Y . Assume
further that for all x ∈ X, limn→∞ Tnx exists. Define T : X → Y by T x = limn→∞ Tnx.
With this definition, T is a bounded linear operator from X to Y .
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Proof. It is easy to check that T is linear, and we leave the details of this to the
reader. We will use the principle of uniform boundedness to show that T is bounded.
For each x ∈ X , supn ‖Tnx‖ < ∞ since {Tnx} is a convergent sequence by hypoth-
esis and convergent sequences in a metric space are bounded. By Theorem 3.11,
supn ‖Tn‖ ≡ M < ∞. This means that for each x ∈ X , and any n, ‖Tnx‖ ≤ M‖x‖. We
have

‖T x‖ = ‖ lim
n→∞

Tnx‖ ≤ M‖x‖

(note the continuity of the norm lurking behind this calculation) and T is bounded
with ‖T‖ ≤ M. ��

Note that the last result does not say that if Tn → T pointwise on X , then ‖Tn‖→
‖T‖. For example, let Tn : �2 → C be the linear operator given by Tn({ak}) = an.
For each a = {ak} in �2 we have limn→∞ Tn(a) = 0, so T ≡ 0 is the pointwise limit
of the operators Tn. However, ‖Tn −T‖ = ‖Tn‖ = 1.

We give some examples to illustrate applications of Theorems 3.11 and 3.12. The
first uses the sequence space c0 = {{an}∞

1 : limn→∞ an = 0}, in the supremum norm.
It is left to the reader (see Exercise 3.16) to show that c0 is a closed subspace of �∞,
hence is itself a Banach space.

Example 3.13. Suppose that {an}∞
1 is a sequence of complex numbers such that

∑∞
1 anbn converges whenever {bn}∞

1 is in c0. We will show that ∑∞
1 |an| < ∞. To see

this, define Tk : c0 → C by

Tk({bn}) =
k

∑
j=1

a jb j.

Each Tk is a bounded linear functional on c0 with ‖Tk‖ ≤ ∑k
j=1 |a j|; the latter state-

ment follows from the calculation∣∣∣∣∣
k

∑
j=1

a jb j

∣∣∣∣∣≤
k

∑
j=1

|a jb j| ≤
(

max
1≤ j≤k

|b j|
) k

∑
j=1

|a j| ≤ ‖{bn}‖∞

k

∑
j=1

|a j|.

In fact, we have equality: ‖Tk‖ = ∑k
j=1 |a j|. To see this, consider Tk acting on the

unit vector in c0 (
a1

|a1|
,

a2

|a2|
, · · · , ak

|ak|
,0 · · ·

)

(with the obvious modifications if some a j = 0), whose image under Tk is ∑k
j=1 |a j|.

We are given, then, that for each b = {bn} ∈ c0, limk→∞ Tk(b) exists, since Tk(b) =
∑k

1 a jb j and ∑∞
1 a jb j converges. In particular, supk |Tk(b)| < ∞ for each b ∈ c0. By

Theorem 3.11, supk{‖Tk‖} < ∞, and thus ∑∞
j=1 |a j| < ∞.

Example 3.14. Our next example is an application of Theorem 3.11 to a question
about convergence of Fourier series. A continuous function f on the unit circle T
has a Fourier series

∞

∑
k=−∞

akeikx ,
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where
ak = f̂ (k) =

1
2π

∫ π

−π
f (t)e−ikt dt

(that is, the Fourier expansion of f with respect to the orthonormal basis {einx}∞
−∞

for L2(T,dx/(2π)). We know that this series converges to f in the norm of L2(T ),
and so a subsequence converges pointwise almost everywhere; this is true for any
f in L2(T ), not just the continuous ones. But the general question of the point-
wise convergence of the series is more delicate. In fact, for a period of time that
stretched for 40 years, Riemann, Dirichlet, Weierstrass, and Dedekind all believed
that the Fourier series of a continuous function converged pointwise everywhere
(necessarily to the function value). The first counterexample was given in 1876 by
DuBois-Reymond. Then the pendulum swung and for a while it was believed that
the Fourier series of a continuous function could fail to converge at every point. In
1966 Lennart Carleson settled the matter definitively by proving the “Lusin con-
jecture,” which asserts that the Fourier series of any function in L2(T ) (and thus,
in particular, of any continuous function) converges pointwise almost everywhere.
What we will do in this example is use the principle of uniform boundedness to
show there exists an f ∈ C(T ) such that sn( f ,0) does not converge to f (0), where
sn( f ,0) denotes the symmetric partial sum ∑n

k=−n f̂ (k)eikt evaluated at 0. Indeed, we
will show the existence of an f ∈C(T ) so that the partial sums of the Fourier series
of f at t = 0 are unbounded.

We begin with a calculation.

sN( f , t) ≡
N

∑
k=−N

f̂ (k)eikt =
N

∑
k=−N

(∫ π

−π
f (x)e−ikx dx

2π

)
eikt

=
∫ π

−π
f (x)

N

∑
k=−N

eik(t−x) dx
2π

=
∫ π

−π
f (x)DN(t − x)

dx
2π

where DN(s) = ∑N
k=−N eiks; this is the so-called Dirichlet kernel. The reader may

recognize the last integral as the convolution f ∗DN(t) of f and DN . Next we claim
that

DN(s) =
sin(N + 1

2 )s
sin( s

2 )

when s �= 0, and 2N +1 when s = 0. In the case s = 0 this is clear; otherwise write

N

∑
k=−N

eiks = e−iNs
2N

∑
k=0

eiks = e−iNs 1− ei(2N+1)s

1− eis .

Multiplying numerator and denominator by e−is/2 and using the identity e−iy−eiy =
−2isiny gives the desired result. This kernel DN(s) is badly behaved in two respects:
it is not positive and ‖DN‖1 is not bounded. To see the latter, we have
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‖DN‖1 =
∫ π

−π

|sin(N + 1
2 )s|

|sin( s
2 )|

ds
2π

=
∫ π

0

|sin(N + 1
2 )s|

|sin( s
2 )|

ds
π

≥ 2
π

∫ π

0

|sin(N + 1
2 )s|

s
ds

=
2
π

∫ π(N+ 1
2 )

0
|sinu|du

u
,

where we have used the estimate 0 ≤ sin t ≤ t for 0 ≤ t ≤ π/2 and made the substi-
tution u = (N +(1/2))s. Now

2
π

∫ π(N+ 1
2 )

0
|sinu|du

u
≥ 2

π

N

∑
k=1

∫ kπ

(k−1)π
|sinu| 1

kπ
du =

4
π2

N

∑
k=1

1
k
≥ 4

π2 log(N +1).

Now let us get set up to use the principle of uniform boundedness. Recalling
that C(T ) is a Banach space in the supremum norm, define the linear functional
Λn : C(T ) → C by Λn( f ) = sn( f ,0). Since

sn( f ,0) =
∫ π

−π
f (x)Dn(−x)

dx
2π

we see that

|Λn( f )| =
∣∣∣∣
∫ π

−π
f (x)Dn(−x)

dx
2π

∣∣∣∣≤
∫ π

−π
| f (x)||Dn(−x)| dx

2π
≤ ‖ f‖∞‖Dn‖1

so that Λn is bounded with norm at most ‖Dn‖1. We claim that we actually have
equality: ‖Λn‖= ‖Dn‖1. To see this, fix n and let g(x) be defined to be 1 if Dn(x) > 0,
to be −1 if Dn(x) < 0 and 0 if Dn(x) = 0. We may then find continuous and piecewise
linear functions f j(x) with −1 ≤ f j(x)≤ 1 for all x and f j → g pointwise on [−π,π]
as j → ∞. By the dominated convergence theorem

lim
j→∞

∫ π

−π
f j(x)Dn(−x)

dx
2π

=
∫ π

−π
g(x)Dn(−x)

dx
2π

=
∫ π

−π
|Dn(−x)| dx

2π
= ‖Dn‖1.

Since ‖ f j‖∞ ≤ 1 this shows that ‖Λn‖ ≥ ‖Dn‖1 as desired.
We are finally ready to make our appeal to the principle of uniform boundedness.

Either ‖Λn‖ ≤ M for some M < ∞ and for all n, or there exists f ∈ C(T ) such that
supn |Λn( f )| = ∞. Since ‖Λn‖ = ‖Dn‖1 → ∞, the first alternative cannot hold and
thus the second must. We obtain the existence of an f ∈C(T ) such that

sup
n
|Λn( f )| = sup

n
|sn( f ,0)| = ∞,

and the Fourier series of f diverges at 0.

The next result is dual to the principle of uniform boundedness.
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Theorem 3.15. Let X be a normed linear space, and suppose A is a subset of X. If
sup{|ϕ(x)| : x ∈ A} is finite for each fixed ϕ in X∗, then A is bounded.

Proof. Consider the natural map Φ : X → X∗∗ taking x to x∗∗. Note that Φ(A) is
thus a collection of bounded linear functionals on X∗. Since X∗ is a Banach space

sup{|Φ(x)(ϕ)| : x ∈ A} = sup{|ϕ(x)| : x ∈ A} < ∞

for each ϕ ∈ X∗. By Theorem 3.11, applied to the linear maps

F = {Φ(x) : x ∈ A},

we must have
sup{‖Φ(x)‖ : x ∈ A} < ∞.

However, we know that Φ is an isometry of X into X∗∗, so that ‖Φ(x)‖= ‖x‖. Thus
we conclude sup{‖x‖ : x ∈ A} < ∞; that is, A is bounded. ��

Exercise 3.18 gives an application of Theorem 3.15.

3.3 Open Mapping and Closed Graph Theorems

The theorems of the title of this section are closely related; we will prove the open
mapping theorem first, using the Baire category theorem, and then derive the closed
graph theorem from it. An open map is one for which the image of every open set is
open. The open mapping theorem concerns surjective maps in B(X ,Y ).

Theorem 3.16 (Open Mapping Theorem). Suppose that X and Y are Banach
spaces and that T is a bounded linear operator from X to Y . If T maps X onto
Y , then T (G) is open in Y whenever G is open in X.

Before we discuss the proof, let us give one important consequence. This is often
called the inverse mapping theorem, and it is the third member of the triumvirate of
results in this section.

Corollary 3.17 (Inverse Mapping Theorem). Suppose X and Y are Banach spaces
and T ∈ B(X ,Y ) is bijective. Its set-theoretic inverse T−1 is then a bounded linear
operator from Y to X.

Proof. We have already observed that T−1 exists as a linear map, so only bounded-
ness of T−1 remains to be shown. By the open mapping theorem, T carries open sets
to open sets. Now T−1 is bounded if and only if T−1 is continuous, and T−1 : Y → X
is continuous if and only if (T−1)−1(G) is open in Y for every G that is open in X .
But (T−1)−1(G) = T (G) and, by Theorem 3.16, T (G) is open in Y for any open set
G in X . Thus we conclude that T−1 is bounded, as desired. ��
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This answers our old question as to whether the set-theoretic invertibility of
T ∈ B(X ,Y ) implies its operator-theoretic invertibility, i.e., the existence of an in-
verse in B(Y,X). We see the answer is yes, a result that Paul Halmos calls “one of
the pleasantest and most useful facts about operator theory.” The inverse mapping
theorem was first proved by Banach in 1929. Our approach, using the open mapping
theorem, is due to Schauder in 1930.

We turn next to the proof of the open mapping theorem. We will accomplish this
by first proving the next result.

Theorem 3.18. Suppose that X and Y are Banach spaces, and let BX and BY denote
the open unit balls, centered at 0, in X and Y , respectively. Suppose A is a bounded
linear operator mapping X onto Y . There exists a positive constant δ such that
δBY ⊆ A(BX ); that is, given y ∈ Y with ‖y‖ < δ there is x ∈ X with ‖x‖ < 1 and
Ax = y.

Notice that the hypothesis that A is onto Y says that given any y in Y we may find
an x in X with Ax = y; thus the significance of Theorem 3.18 is that we may control
the norm of x in terms of the norm of y. Before we give the proof of Theorem 3.18,
let us see that it will quickly yield the open mapping theorem.

Proof (Theorem 3.16). Let G be an open set in X and let x0 be in G. We only need
to show that A(G) contains an open ball about Ax0. To this end, translate G to obtain
G′ ≡ G− x0. Since G′ is an open set containing 0 we may find a positive number t
with tBX ⊆ G′. By Theorem 3.18 we have

A(G′) ⊇ A(tBX ) = tA(BX ) ⊇ tδBY

for some positive constant δ . By linearity,

A(G) = A(G′ + x0) = Ax0 +A(G′) ⊇ Ax0 + tδBY ;

this last is the open ball centered at Ax0 of radius tδ . ��

To prove Theorem 3.18 we first give a lemma which is an approximate version of
the theorem. It says that given y ∈ Y we may get as close to y as desired by a vector
of the form Ax for some x in X whose norm is controlled by the norm of y.

Lemma 3.19. Suppose that X and Y are Banach spaces, and that A is a bounded
linear operator mapping X onto Y . There is a positive number d with the following
property: Given ε > 0 and y ∈ Y there exists x ∈ X such that ‖Ax− y‖ < ε and
‖x‖ < d−1‖y‖.

Proof. Given y ∈Y there exists x̃ in X with Ax̃ = y, since A is surjective. This means

Y =
∞⋃

k=1

A(kBX )
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where BX is the open unit ball in X . Since Y is a complete metric space, the Baire
category theorem says that for some k, A(kBX ) has closure with nonempty interior;
say

A(kBX ) ⊇ B(y0,r)

for some r > 0 and y0 ∈ Y . If ‖y‖ < r, then y + y0 will be in B(y0,r) and hence in
A(kBX ). Thus for any y in Y with ‖y‖ < r we may find sequences {x′n} and {x′′n}
in kBX such that Ax′n → y0 and Ax′′n → y0 + y. Consider xn ≡ x′′n − x′n, and note that
Axn → y and ‖xn‖ < 2k.

The conclusion will follow from exploiting linearity. Let z �= 0 be an arbitrary
vector in Y , so that (r/2)(z/‖z‖) is a vector in Y of norm less than r. By the first part
of the proof we may find a sequence xn in X with ‖xn‖≤ 2k and Axn → (r/2)(z/‖z‖).
Linearity says A((2/r)‖z‖xn) → z where the norm of (2/r)‖z‖xn is less than
(4k/r)‖z‖. This is the desired conclusion, with d = r/(4k). ��

We can now prove Theorem 3.18 by an iterative use of this lemma. In the state-
ment of the Lemma 3.19, we will refer to y as the target vector and ε as the toler-
ance.

Proof (Theorem 3.18). Let A, X , and Y be as in the statement of the theorem, and let
d be as given by Lemma 3.19. Fix y in dBY , the open unit ball of radius d centered
at 0 in Y . We apply the lemma, with target vector y and tolerance ε = d/2, to find
x1 ∈ X of norm less than (1/d)‖y‖< 1 such that ‖y−Ax1‖< d/2. Apply the lemma
again, this time with target y−Ax1 and tolerance ε = d/4 to find x2 in X with

‖(y−Ax1)−Ax2‖ <
d
4

and
‖x2‖ <

1
d
‖y−Ax1‖ <

1
2
.

Continue inductively, so that if we have determined x1,x2, . . . ,xn with

‖y−Ax1 −Ax2 −·· ·−Axn‖ <
d
2n

and
‖xk‖ <

1
2k−1 for k = 1,2, . . . ,n,

then at the next step we apply the lemma with target y−Ax1−·· ·−Axn and tolerance
d/2n+1 to select xn+1 so that

‖y−Ax1 −·· ·−Axn −Axn+1‖ <
d

2n+1

and
‖xn+1‖ <

1
d
‖y−Ax1 −·· ·−Axn‖ <

1
2n .
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For each positive integer n, define vn = x1 + x2 + · · ·+ xn and observe that {vn}
is a Cauchy sequence in X : When m > n,

‖vm − vn‖ = ‖xn+1 + · · ·+ xm‖ <
m

∑
n+1

1
2k → 0

as n,m → ∞. By completeness, there is an x ∈ X with vn → x. Moreover,

‖x‖ ≤
∞

∑
1
‖xk‖ <

∞

∑
1

1
2k−1 = 2

so that x is in 2BX . Since ‖y−Avn‖< d/2n we have Avn → y as n→∞. By continuity
of A, Avn → Ax, so that y = Ax. Recalling that y was arbitrary in dBY and x is in 2BX ,
we see that we have proved A(2BX )⊇ dBY , and by linearity A(BX )⊇ (d/2)BY . This
gives Theorem 3.18, with δ = d/2. ��

Definition 3.20. When X and Y are normed linear spaces and T : X → Y is a linear
map, the graph of T , denoted graph(T ), is {(x,T x) : x ∈ X}. Note that the graph of
T is a subset of X ×Y .

The product X ×Y is a vector space under coordinatewise operations. We can put
a norm on X ×Y (the “one-norm”) by ‖(x,y)‖= ‖x‖X +‖y‖Y . It is not hard to show
that when X and Y are Banach spaces, then X ×Y in the one-norm is also a Banach
space; see Exercise 3.19. Notice also that the graph of T is a (not necessarily closed)
subspace of X ×Y .

The next result, called the closed graph theorem, gives a new way to see if a
linear map between Banach spaces is bounded.

Theorem 3.21 (Closed Graph Theorem). If X and Y are Banach spaces and T :
X → Y is linear, then T is bounded if and only if graph(T ) is closed in X ×Y .

Before we give the proof, we make a few observations. The hypothesis that
graph(T ) is closed can be reformulated as “whenever (xn,T xn) converges to (x,y) in
X ×Y , then we must have y = T x”. The “only if” direction of Theorem 3.21 is triv-
ial: If T is bounded and if (xn,T xn) ∈ graph(T ) satisfies (xn,T xn) → (x,y), we have
‖xn−x‖X → 0 and ‖T xn−y‖Y → 0. Continuity of T implies that ‖T xn−T x‖Y → 0,
so that T x = y.

Proof (Theorem 3.21). Only the “if” direction needs proof. If the graph of T is
closed, then it is a closed subspace of the Banach space X ×Y (in the one-norm), and
thus is itself a Banach space. Consider the continuous linear maps P1 : graph(T )→X
and P2 : graph(T ) → Y defined by P1(x,T x) = x and P2(x,T x) = T x. The map P1 is
bijective, and thus, by the inverse mapping theorem, P−1

1 is a continuous linear map
of X onto graph(T ). Since we can write T = P2 ◦P−1

1 , we see that T is continuous.
��

Let us think about what this result actually does for us. If X and Y are Banach
spaces and T : X →Y is linear, to show that T is continuous from the definition, we
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assume that xn → x, and then must show both that T xn converges, and that its limit
is T x. By contrast, with the closed graph theorem at our disposal, to show that T is
continuous, we may assume both

xn → x and T xn → y;

our task is then simply to show that y = T x. In fact, its even a bit simpler. By lin-
earity, we need only show that whenever xn → 0 and T xn → y, then y = 0; see
Exercise 3.21.

As an application of the closed graph theorem, we next prove the two-norm the-
orem.

Theorem 3.22 (Two-Norm Theorem). Suppose X is a normed linear space with
two norms, ‖ · ‖1 and ‖ · ‖2, each of which make X into a Banach space. If there
exists a finite constant M such that

‖x‖1 ≤ M‖x‖2

for all x ∈ X, then there exists a finite constant K such that ‖x‖2 ≤ K‖x‖1 for all
x ∈ X.

Proof. Let I : (X ,‖ ·‖1)→ (X ,‖ ·‖2) be the identity map. Clearly I is linear, and we
want to show that it is bounded. To do this we will apply the closed graph theorem.
Suppose that xn → x in (X ,‖ · ‖1) and that I(xn) = xn → y in (X ,‖ · ‖2). Our goal is
to show that y = Ix = x. For each n,

‖I(x)− y‖1 = ‖x− y‖1 ≤ ‖x− xn‖1 +‖xn − y‖1 ≤ ‖x− xn‖1 +M‖xn − y‖2,

which tends to 0 as n → ∞. Hence x = y, and by Theorem 3.21 we conclude that I
is bounded. ��

When a pair of norms ‖ · ‖1 and ‖ · ‖2 satisfy both ‖x‖1 ≤ M‖x‖2 and ‖x‖2 ≤
K‖x‖1 for finite constants M and K, we say the norms are equivalent. Note that
equivalent norms will induce the same topology on the underlying space, since an
open set in one norm is also an open set in the other norm.

As an application of the two-norm theorem, we will show that C[0,1] in the
L1 norm ‖ f‖1 =

∫ 1
0 | f |dx is not a Banach space. We know that (C[0,1],‖ · ‖∞)

is a Banach space, and it is trivial that ‖ f‖1 ≤ ‖ f‖∞ holds for all f in C[0,1].
If (C[0,1],‖ · ‖1) were a Banach space, the two-norm theorem would say that
‖ f‖∞ ≤ K‖ f‖1 for some finite constant K and all f ∈C[0,1]. The reader can easily
construct piecewise linear functions fn in C[0,1] with ‖ fn‖1 = 1 and ‖ fn‖∞ = n; for
example, let fn(x) be n− (n2/2)x for 0 ≤ x ≤ 2/n and 0 elsewhere.
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3.4 Quotient Spaces

As an application of the results in the previous section, we consider the notion of
a quotient space of a Banach space. Suppose that X is a Banach space, and M is a
closed subspace of X . Define an equivalence relation on X by decreeing that x ∼= y
if and only if x − y is in M; this is easily verified to be an equivalence relation.
Denote the set of equivalence classes by X/M; that is, X/M is the set of cosets
x + M where x1 + M = x2 + M if and only if x1 − x2 is in M. Define addition and
scalar multiplication on X/M by

(x1 +M)+(x2 +M) = x1 + x2 +M

and
α(x+M) = αx+M.

With these definitions, X/M becomes a vector space with zero vector 0 + M = M.
Put what will be a norm on X/M by setting

‖x+M‖ = inf{‖x+m‖ : m ∈ M} = inf{‖x−m‖ : m ∈ M},

so that ‖x+M‖ can be thought of as the distance from x to M. Note that ‖x+M‖= 0
if and only if x is in M; we are using the hypothesis that M is closed. In Exercise 3.25
you are asked to show that this is indeed a norm on X/M, and that X/M is complete.
The map Π : X → X/M which sends x to x + M is called the natural, or quotient,
map. It is linear, and since

‖Π(x)‖ = ‖x+M‖ ≤ ‖x‖,

it is bounded.
As a particular application of these ideas, consider a bounded linear operator

T : X → Y , where X and Y are Banach spaces and let M = ker T , a closed subspace
in X . Consider the quotient X/M = X/ker T . If T is surjective, we claim that Y and
X/ker T are isomorphic; that is, there is a bijective bounded linear operator from
one onto the other, with bounded inverse. To see this, set

A : X/ker T → Y

by
A(x+ker T ) = T x.

It is easy to verify that A is well-defined, linear, and bounded; see Exercise 3.26.
Moreover, if A(x1 +ker T) = A(x2 +ker T), then T x1 = T x2 and x1 −x2 is in ker T .
This shows that A is one-to-one. To see that A is onto Y , let y be in Y and find x
with T x = y, so that A(x +ker T ) = y. Once we know that A is bijective and linear,
the inverse mapping theorem guarantees that A has a bounded inverse, and therefore
X/ker T is isomorphic to Y .
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As a special case of this, suppose T is a bounded linear functional on a Banach
space X that is not the zero functional. In this case, T is automatically surjective, so
we conclude that X/ker T is isomorphic to C. This result will be important to us in
Chapter 5.

It is interesting to look at H /M in the special case that M is a closed subspace
of a Hilbert space H . Exercise 3.26 asks you to show that in this case the quotient
map gives an isometric isomorphism of M⊥ onto H /M. The philosophy is then that
X/M acts as a substitute for M⊥ in the Banach, non-Hilbert space setting.

3.5 Banach and the Scottish Café

By now we have seen evidence of Banach’s central role in the development of func-
tional analysis in roughly the period from 1920 (when he completed his doctoral
thesis) to his death in 1945, at which point the theory of linear operators on Banach
and Hilbert spaces had reached a level of maturity. Bourbaki (see the footnote in
Section 1.4) makes the following comment:

The publication of Banach’s treatise “Opérations Linéaires” marks, one could say, the be-
ginning of the adult age for the theory of normed spaces.... As it happened, the work had
considerable success...([6], p. 347).

Here we will say a bit more about his life and mathematical colleagues in Poland.
Much more information can be found in R. Kaluza’s biography of Banach [26].

Banach was a protege of Steinhaus, who was only a few years older than Banach,
and together they founded the Polish school of functional analysis, often referred to
as the Lwów school, which flourished during the period between World War I and
World War II. For a time the Café Szkocka (“Scottish Café”) in Lwów served as a
prime location for collaborative work and discussion between the members of this
Lwów school. Meetings of the Polish Mathematical Society held at the Mathemat-
ics Department at the University of Lwów were followed by discussions, first at the
nearby Café Roma, and then later next door at the Café Szkocka, which evidently
offered Banach a more congenial credit situation. Eventually this became the site of
near daily meetings, and a notebook purchased by Banach’s wife became a repos-
itory for problems posed by mathematicians working in the Scottish Café (prior to
this purchase, problems and work simply got written on the marble tabletops of the
café, to be erased at closing time by the janitor). The first entry in the “Scottish
Problem Book” as it came to be known, was made in July 1935 and the 193rd—and
last—entry in May 1941. Space was left after each problem for any forthcoming
solution to be added later. The book was kept at the café, to be produced by a waiter
or cashier when called for by Banach or one of his colleagues. Visitors added to the
problem book too, and one can see hints of the larger political landscape in this; for
example, Russian names appear among the contributors after 1939, when the Soviet
Union occupied Lwów. Prizes were offered for solutions to some of the problems,
many of these involved alcohol: “two small beers,” “a flask of brandy,” or “a bottle
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of wine,” while others were more unusual: “a live goose,” or hinted at deprivations
brought on by world events, “a kilo of bacon.” As World War II loomed, there were
concerns for the safety of the book and various suggestions were made for its safe-
keeping. The book did survive the war, and the original remains in the possession of
Banach’s son. A copy of the book was published by Birkhäuser in 1981 [31], along
with considerable commentary on the problems. Many parts of mathematics—not
just functional analysis—are represented.

When Germany invaded the Soviet Union and then entered Lwów in 1941, Ba-
nach faced danger, both as a member of the “Polish intellectual elite” and for hav-
ing had good relations with the Soviets during the previous period. That he escaped
death when many Polish scholars were executed was perhaps due to his employment
as a “lice-feeder” in the Weigl Institute in Lwów. Run by the Polish biologist Rudolf
Stefan Weigl, the Institute produced a typhus vaccine by a process which required
daily feedings of lice on the blood of human hosts. Weigl was able to offer some
measure of protection for employees of the Institute, many of whom were univer-
sity professors, from arrest and deportation to concentration camps. This was both
because the work of the institute was considered a priority by the Germans, and at
the same time, the Gestapo was disinclined to interfere with Institute employees for
fear they could be carrying typhus-infected lice. Institute employees carried special
identity papers which included warnings of this risk. Many of the feeders in the
particular unit in which Banach worked were also mathematicians, and lively math-
ematical discussions continued during the time when the lice were feeding. Banach
worked in the Weigl Institute from the fall of 1941 until Soviet troops reentered
Lwów in July 1944. An underground university, formed under cover of the Insti-
tute, also came into existence during this period. Banach taught in this university,
and according to a reminiscence of Banach written by Steinhaus [44], one student
received a doctorate under his direction during this time. Although Banach survived
the period of Nazi occupation of Lwów, he suffered under the harsh conditions of
the time, with illness and malnutrition, and died at the young age of 53 in 1945 of
lung cancer.

3.6 Exercises

3.1. Use Zorn’s lemma to prove the following: If E is an orthonormal set in a Hilbert
space H , then H has an (orthonormal) basis containing E. In particular, every
Hilbert space has an orthonormal basis. A similar Zorn’s lemma argument shows
that every vector space has a Hamel basis.

3.2. We introduce some terminology for the purpose of this problem: If X is either a
real or complex vector space (meaning that the scalars used in scalar multiplication
are real, or, respectively, complex), we say that a real-valued ϕ is a real-linear func-
tional if ϕ(x + y) = ϕ(x)+ ϕ(y) and ϕ(αx) = αϕ(x) holds for all x,y ∈ X and α
real. For X a complex vector space, we say that (a complex-valued) ϕ is a complex-
linear functional if these relationships hold for all x,y ∈ X and α complex.
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(a) Show that for any complex number z, z = Re z− iRe (iz).
(b) Suppose X is a complex vector space and ϕ is a complex-linear functional on

X . Define u : X → R by u(x) = Re ϕ(x). Show that ϕ(x) = u(x)− iu(ix) for all
x ∈ X .

(c) Suppose u is a real-linear functional on X . Define ϕ : X → C by ϕ(x) =
u(x)− iu(ix). Show that ϕ is a complex-linear functional on X . (Hint: Check the
condition ϕ(αx) = αϕ(x) first for α real, then for α = i, then for α complex.)

(d) Now suppose X is a normed linear space. For ϕ and u related as above, show
that ‖ϕ‖ = ‖u‖.

3.3. (Complex Hahn–Banach). Suppose Y is a subspace of a complex normed linear
space X and ϕ : Y → C is a bounded, complex-linear functional on Y . Show that ϕ
extends to a bounded complex-linear functional Φ on X with ‖ϕ‖ = ‖Φ‖. Hints:
Most of the work is done by the previous problem. Let u = Re ϕ and use the real
Hahn–Banach theorem to extend u to U on all of X . Define Φ(x) = U(x)− iU(ix)
and check that Φ has the desired properties. This correspondence between U and Φ
was observed by Löwig in 1934.

3.4. Let L∞
R

be the space of real-valued essentially bounded functions on [0,1] with
respect to Lebesgue measure. Let M be the subspace of constant functions. Define
f : M → R by f (c) = c, where on the left hand side, c denotes the constant function
with value c. Let g0(x) = x, and set N ≡ {c + tg0 : c ∈ M, t ∈ R}. The proof of the
one-step extension process in the Hahn–Banach theorem tells you how to find all
linear F : N → R so that F extends f and ‖F‖ = ‖ f‖. Find all such F .

3.5. For 1 ≤ p < ∞ it is a fact that the dual space to Lp(X ,µ), where (X ,µ) is a σ -
finite measure space, is Lq(X ,µ), 1/p+1/q = 1, in the following sense: Given g ∈
Lq(X ,µ), define Λg( f ) =

∫
X f gdµ . This is a bounded linear functional on Lp(X ,µ),

and ‖Λg‖ = ‖g‖q. Conversely, every bounded linear functional on Lp(X ,µ) has this
form. Using this and the Hahn–Banach theorem, show

‖ f‖p = sup
{∣∣∣∣
∫

X
f gdµ

∣∣∣∣ : g ∈ Lq(X),‖g‖q = 1
}

for all f ∈ Lp(X).

3.6. Suppose that (X ,µ) is a positive, σ -finite measure space. Let {gn} be a se-
quence in L3(X ,µ) such that supn ‖gn‖ = ∞. Prove there exists a function f ∈
L3/2(X ,µ) such that supn |

∫
f gndµ | = ∞. You may use the fact that the dual space

of Lp(µ),1 ≤ p < ∞, is Lq(µ), 1/p + 1/q = 1 in the sense that is described in the
previous exercise.

3.7. Let X be a compact Hausdorff space. A positive linear functional on C(X) is a
(bounded) linear functional Λ with the additional property that Λ( f ) ≥ 0 whenever
f ≥ 0 on X . Show that point evaluation at x0 ∈ X is a positive linear functional for
each x0 ∈ X .
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There is a representation theorem for the positive linear functionals on C(X)
which says that for each positive linear functional Λ there is a unique positive,
finite, regular Borel measure µ on X with

Λ( f ) =
∫

X
f dµ .

(See Section A.5 in the Appendix for further discussion). If Λ is point evaluation at
x0, what is the corresponding measure µ?

3.8. Prove Corollary 3.6.

3.9. Let �∞
R

denote the space of bounded sequences with real entries, in the supre-
mum norm. Consider the operator T defined on �∞

R
by T (x1,x2, . . .) = (x2,x3, . . .);

this is clearly bounded. Let M = ran (T − I), a subspace of �∞
R

. Set e = (1,1,1, . . .)∈
�∞
R

, and note that since 0 ∈ M, dist (e,M) ≤ ‖e‖∞ = 1.

(a) Show that in fact dist (e,M) = 1. Hint: Argue by contradiction.
(b) Show that there exists a bounded linear functional ϕ : �∞

R
→ R with ‖ϕ‖ = 1,

ϕ(e) = 1, and ϕ(T{xn}) = ϕ({xn}) for every {xn} in �∞
R

.
(c) Let c be real and s > 0. Consider a sequence {xn} with

c− s ≤ xn ≤ c+ s

for all n ∈ N. Show that

c− s ≤ ϕ({xn}) ≤ c+ s.

(d) Show that for any k = 0,1,2, . . . and {xn} in �∞
R

,

ϕ(T k+1{xn}) = ϕ(T k{xn}).

Conclude that
ϕ({x1,x2, . . .}) = ϕ({xN ,xN+1, . . .})

for every N ∈ N.
(e) Show that if {xn} ∈ �∞

R
, then

liminf
n→∞

xn ≤ ϕ({xn}) ≤ limsup
n→∞

xn.

Such a linear functional is called a Banach limit. Note that if limn→∞ xn exists,
it must be ϕ({xn}).

3.10. Given a normed linear space X and a (not necessarily closed) subspace M of
X , define

M⊥ = {ϕ ∈ X∗ : ϕ(x) = 0 for all x ∈ M},
the bounded linear functionals that vanish on M. Call this the annihilator of M, and
note that the notation is consistent with our earlier usage in the context of Hilbert
spaces. Furthermore, if N is a (again, not necessarily closed) subspace of X∗, define
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⊥N = {x ∈ X : ϕ(x) = 0 for all ϕ ∈ N},

so that ⊥N is the set of common zeros of the bounded linear functionals in N. Show
that for any subspace M of X ,

⊥(M⊥) = closure M.

3.11. Show that if X is a Banach space that is not reflexive, then X∗ is also not
reflexive. Hint: Find a nonzero bounded linear functional on X∗∗ which is 0 on
{x∗∗ : x ∈ X}.

The converse statement is also true; see p. 132 in [8].

3.12. Use the Baire category theorem to show that no infinite-dimensional Hilbert
space can have a countable Hamel basis.

3.13. The point of this problem is to show that Theorem 3.11 may fail in a normed
linear space that is not a Banach space. Let F be the set of “eventually zero” se-
quences, in the supremum norm; this means that a sequence {an} ∈ �∞ belongs to F
if there is an N with an = 0 for all n ≥ N. Define linear maps Tn : F → C by

Tn({ak}) =
n

∑
k=1

ak.

Show that each Tn is linear and bounded and for any fixed sequence x = {ak} in F ,
sup{|Tn(x)| : n = 1,2,3, . . .} is finite. Is sup{‖Tn‖ : n = 1,2,3 . . .} < ∞?

3.14. Let H be a Hilbert space. Let {xn} be a sequence in H with the prop-
erty that 〈x,xn〉 → 0 as n → ∞ for each vector x ∈ H . Show that sup{‖xn‖ : n =
1,2,3, . . .} < ∞.

3.15. In this problem we outline the “gliding hump” technique as originally used by
Banach and Steinhaus to prove the uniform boundedness principle. This outline is
taken from [34]. We keep the notation as in Theorem 3.11. Denote

sup{‖T x‖ : T ∈ F} = m(x)

so that m(x) < ∞ for each x ∈ X . Assume, for a contradiction, that sup{‖T‖ : T ∈
F} = ∞.

(a) Show that by an inductive construction we may find T1,T2, . . . in F and x1,x2, . . .
in X with

1
4

1
3n ‖Tn‖ ≥ ∑

k<n
m(xk)+n

‖xn‖ ≤
1
3n

and
‖Tnxn‖ ≥

3
4

1
3n ‖Tn‖.
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(Determine the Tj and x j alternately.)
(b) Set x = ∑∞

k=1 xk so that Tnx = ∑k<n Tnxk + Tnxn + ∑k>n Tnxk; the middle term
being the “gliding hump.” Observe that∥∥∥∥∥∑

k<n
Tnxk

∥∥∥∥∥≤ ∑
k<n

m(xk)

and ∥∥∥∥∥∑
k>n

Tnxk

∥∥∥∥∥≤ ∑
k>n

1
3k ‖Tn‖ ≤

1
2 ·3n ‖Tn‖.

Argue that ‖Tnx‖ ≥ n, a contradiction.

3.16. Show that
c0 = {{an}∞

1 : lim
n→∞

an = 0}

is a closed subspace of �∞, in the supremum norm.

3.17. For any a = {an} in �1, define a linear functional ϕa on c0 by

ϕa({xn}) =
∞

∑
n=1

anxn.

Show that the map a → ϕa is an isometric isomorphism of �1 onto (c0)∗; that is,
(c0)∗ ∼= �1.

3.18. Let X and Y be normed linear spaces and suppose T : X → Y is linear. Show
that T is continuous if ϕ ◦T is continuous for all ϕ in X∗.

3.19. Suppose that X and Y are Banach spaces.

(a) Show that X ×Y in the one-norm

‖(x,y)‖ ≡ ‖x‖X +‖y‖Y

is a Banach space.
(b) Is X ×Y a Banach space in the norm

‖(x,y)‖∞ ≡ max(‖x‖X ,‖y‖Y )?

3.20. Let c denote the linear subspace of �∞ consisting of all sequences x = {xn}∞
1

for which limn→∞ xn exists.

(a) Let e = (1,1,1, . . .) ∈ c. Show that

c = {x+αe : x ∈ c0 and α ∈ C}.

(b) Argue that the formula ϕ∞({xn}) = limn→∞ xn defines a bounded linear func-
tional on c, where c is equipped with the supremum norm.
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(c) Show that c is a closed subspace of �∞.
(d) Given b = {bn} in �1 and γ ∈ C, consider the linear functional defined on c by

ψb,γ({xn}) =
∞

∑
n=1

bnxn + γ lim
n→∞

xn.

Show that the map (b,γ)→ψb,γ is an isometric isomorphism of �1×C, equipped
with the norm ‖(b,γ)‖ = ‖b‖1 + |γ|, onto c∗.

3.21. Suppose X ,Y are Banach spaces and T : X → Y is linear. Suppose further that
whenever xn → 0 and T xn → y then y = 0. Show that T is continuous.

3.22. Suppose that ϕ : D → D is an analytic function (where D is the open unit
disk) with the property that f ∈ L2

a(D) implies f ◦ϕ ∈ L2
a(D). Define Cϕ : L2

a(D) →
L2

a(D) by Cϕ( f ) = f ◦ϕ . Show that the composition operator Cϕ is a bounded linear
operator on L2

a(D).

3.23. Let X = C[0,1] in the supremum norm and let

Y = C1[0,1] ≡ { f ∈C[0,1] : f ′ exists and is continuous on [0,1]}.

Give Y the supremum norm also. Define T : Y → X by T f = f ′. Clearly T is linear.

(a) Show that if fn → f and T fn → g, then g = T f . (Hint: you need only show
g(x) = f ′(x) for all x ∈ [0,1]. Use the fundamental theorem of calculus).

(b) Show that T is not bounded.
(c) Why doesn’t this contradict the closed graph theorem?

3.24. Use the closed graph theorem to show that the operator

B f =
f − f (0)

z

is a bounded linear operator on L2
a(D).

3.25. Show that the quotient X/M of a Banach space X by a closed subspace M is a
Banach space. (Begin by showing that

‖x+M‖ ≡ inf{‖x+m‖ : m ∈ M}

is a norm on X/M.)

3.26.(a) Let X and Y be Banach spaces and T : X →Y be a bounded linear operator.
Show that

A : X/ker T → Y

given by A(x + ker T ) = T x is a well-defined, one-to-one, bounded linear oper-
ator.
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(b) Suppose T : X → C is a bounded linear functional, not identically 0, where X
is a Banach space. Show that T must be surjective and conclude X/ker T is
isomorphic to C.

(c) Suppose H is a Hilbert space and M is a closed subspace of H . Use the projec-
tion theorem to show that the quotient map Π : H → H /M gives an isometric
isomorphism of M⊥ onto H /M.

3.27. Suppose that T is in B(H ) for some Hilbert space H and that T has closed
range. Show there exists c > 0 such that

‖T h‖ ≥ c‖h‖

for all h ∈ (ker T )⊥.

3.28. Give an example of a diagonal operator T : H → H whose range is not
closed.

3.29. Let M be a closed subspace of a Banach space X .

(a) Show that the map defined on X∗/M⊥, the quotient of X∗ by the annihilator of
M (see Exercise 3.10 for the definition), sending ϕ +M⊥ to ϕ|M (the restriction
of ϕ to M) is a well-defined, linear, isometric map of X∗/M⊥ onto M∗. (In short,
X∗/M⊥ ∼= M∗).

(b) Show that the map from (X/M)∗ to M⊥ which sends ϕ in (X/M)∗ to ϕ ◦Π ,
where Π is the quotient map from X to X/M, is a well-defined, linear isometry
of (X/M)∗ onto M⊥. (In short, (X/M)∗ ∼= M⊥.)

3.30. Suppose that X is a functional Banach space (as defined in Section 1.4) of
functions defined on a set S, and g is a scalar-valued function on S with the property
that f ∈ X implies f g ∈ X . Define Mg : X → X by Mg f = f g.

(a) Show that Mg is continuous and that g must be bounded.
(b) Show that sup{|g(s)| : s ∈ S} ≤ ‖Mg‖. Give an example to show that this in-

equality may be strict.

3.31. Suppose that X is a functional Banach space over a set S, and that each func-
tion in X is bounded. Show that sups∈S ‖es‖ < ∞, where es denotes the functional of
evaluation at s.

3.32. Suppose that A is a linear map from a Hilbert space H into itself that satisfies
〈x,Ay〉 = 〈Ax,y〉 for all x,y in H . Show that A is bounded.

3.33. This problem outlines a proof of the statement: If X is a Banach space and
T ∈ B(X) is such that X/T X , as a vector space, is finite-dimensional, then T X is
closed.

(a) Argue that since the map A : X/ker T → X defined by A(x+ker T ) = T x is one-
to-one and has the same range as T , we may assume without loss of generality
that T is one-to-one.
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(b) Suppose that X/T X has dimension 1, so that there exists y ∈ X such that X =
{T x + αy : x ∈ X ,α ∈ C}. Show that the map S defined on X ×C in the one-
norm by S(x,α) = T x +αy is continuous and bijective. Use this to show that T
is bounded below and thus has closed range.

(c) Prove the full result.

3.34. This problem outlines one way to show that the Banach space c0 (as defined
in Exercise 3.16) is not a reflexive Banach space.

(a) Show that ϕ : c0 → C defined by

ϕ({an}) =
∞

∑
n=1

an

n!

is a bounded linear functional on c0 and

‖ϕ‖ =
∞

∑
n=1

1
n!

.

(b) Show that for every {an} in c0 with ‖{an}‖ = 1,

|ϕ({an})| <
∞

∑
n=1

1
n!

.

(c) Conclude that c0 is not reflexive.

3.35. Recall the notion of the strong operator topology from Exercise 2.23 in Chap-
ter 2.

(a) Consider a sequence {Tn} of bounded linear operators on a Hilbert space H .
Suppose that for each h∈H , {Tnh} is a Cauchy sequence in H . Show that there
exists T ∈ B(H ) such that Tn → T (SOT). This result is sometimes phrased as
“B(H ) is sequentially complete in the strong operator topology.”

(b) Suppose that {Tn} is a sequence of operators in B(H ) and suppose further
that for each h,g in H , 〈Tnh,g〉 converges as n → ∞. Show that there exists
T in B(H ) such that Tn → T (WOT). Hints: Show first that for each h ∈ H ,
supn ‖Tnh‖< ∞, by considering the family of bounded linear functionals 〈·,Tnh〉,
and then argue that supn ‖Tn‖ < ∞. If S(h,g) ≡ limn→∞〈Tnh,g〉, then S is a
bounded sesquilinear form.

3.36. A sequence {hn} of vectors in a Hilbert space H is said to be a Bessel se-
quence if

∞

∑
n=1

|〈h,hn〉|2 < ∞

for every h ∈ H . A sequence {gn} is said to be a Riesz–Fischer sequence if given
any {cn} ∈ �2 there exists (at least one) vector g ∈ H such that

〈g,gn〉 = cn for all n. (3.5)
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Note that an orthonormal basis is both a Bessel sequence and a Riesz–Fischer se-
quence.

(a) Show that if {hn} is a Bessel sequence, then there exists M < ∞ so that

∞

∑
n=1

|〈h,hn〉|2 ≤ M‖h‖2

for all h ∈ H . Hint: Apply the closed graph theorem to the map S : H → �2

defined by Sh = {〈h,hn〉}.
(b) Show that if {gn} is a Riesz–Fischer sequence, there exists m > 0 such that given

{cn} ∈ �2, the equations in (3.5) hold for at least one solution g satisfying

m‖g‖2 ≤
∞

∑
n=1

|cn|2.

Hint: The closed graph theorem again, applied to the appropriate map

T : �2 → H /N

where N is the orthogonal complement of the closed linear span of the vectors
gn.

3.37. A sequence of distinct vectors {hn} in a separable Hilbert space H is called
a frame if there exist finite positive constants M1 and M2 with

M1‖h‖2 ≤
∞

∑
n=1

|〈h,hn〉|2 ≤ M2‖h‖2

for all h ∈ H . Observe that if {hn} is a frame, then {hn} is a Bessel sequence (as
defined in Exercise 3.36), and that whenever {hn} is a Bessel sequence, the second
inequality in this definition must hold.

(a) Suppose that {hn} is a frame, and define T by

T h =
∞

∑
n=1

〈h,hn〉hn.

Show that T is a bounded linear operator on H .
(b) Show that

M1‖h‖2 ≤ 〈T h,h〉 ≤ ‖T h‖ · ‖h‖
for all h, and thus that T is bounded below.

(c) Show that T is self-adjoint.
(d) Conclude from (b), (c), and Exercise 2.16 in Chapter 2 that T is invertible.

Frames are an important area of current research, and they have applications to
signal processing, and image and data compression and analysis.



Chapter 4
Compact Operators

The theory of compact operators is a convincing example that
deep and important mathematics can be—or should I say must
be—elegant.
A. Pietsch ([34], p. 51).

To set the stage for the main topic of this chapter, we begin with a look at finite-
dimensional spaces.

4.1 Finite-Dimensional Spaces

A vector space is finite-dimensional if it has a finite Hamel basis; that is, if it has a
finite linearly independent spanning set. Finite-dimensional normed linear spaces—
like C

n in your choice of norm—have some especially nice properties. On C
n we

often use the norms

‖(z1,z2, . . . ,zn)‖2 =

(
n

∑
j=1

|z j|2
)1/2

or

‖(z1,z2, . . . ,zn)‖1 =
n

∑
j=1

|z j|

or
‖(z1,z2, . . . ,zn)‖∞ = max

1≤ j≤n
|z j| ,

but as we will see these choices are all “equivalent” in a certain sense that we for-
mally define below.

In C
n, or any finite-dimensional normed linear space, the closed unit ball is com-

pact. The statement in C
n may be known to the reader as the Heine–Borel theorem,

and its extension to any finite-dimensional normed linear space will follow from
Theorem 4.2 below. Recall that in a metric space a set A is compact in the open
cover sense (every open cover has a finite subcover) if and only if it is limit point
compact (every infinite subset of A has a limit point in A). The compactness of the
closed unit ball fails in any infinite-dimensional normed linear space. For example,
if H is a Hilbert space and {en}∞

1 is an infinite orthonormal set in H , then since
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‖en − em‖2 = 2 whenever n �= m, the set {en} has no limit point. In Exercise 4.3
the analogous result in a normed linear space is outlined. As a consequence of this
exercise, we obtain the conclusion that a normed linear space is finite-dimensional
if and only if the closed unit ball is compact.

We introduced the notion of equivalent norms in the last chapter; here we make
the formal definition.

Definition 4.1. Suppose X is a vector space and ‖ · ‖β and ‖ · ‖γ are two norms on
X . We say that these norms are equivalent if there exist finite positive constants m
and M with

m‖x‖β ≤ ‖x‖γ ≤ M‖x‖β

for all x in X .

Equivalence of norms in an equivalence relation and the topologies induced by
two equivalent norms are the same. Thus topological concepts like compactness are
unchanged when one norm is replaced by an equivalent one, and equivalent norms
give rise to the same convergent sequences. We encourage the reader to verify these
assertions.

Theorem 4.2. In a finite-dimensional vector space, any two norms are equivalent.

Proof. Let X be a finite-dimensional vector space and suppose ‖ · ‖β and ‖ · ‖γ are
two norms on X . Fix a Hamel basis {b1,b2 . . . ,bn} for X and define a third norm on
X as follows: Given x ∈ X we write x uniquely in the form

x = α1b1 + · · ·+αnbn

for scalars α j and set

‖x‖∞ = max{|α j| : 1 ≤ j ≤ n}.

The reader can easily check that ‖ · ‖∞ is a norm on X . It suffices to show that both
‖ · ‖β and ‖ · ‖γ are equivalent to ‖ · ‖∞. We will verify that ‖ · ‖β and ‖ · ‖∞ are
equivalent; the equivalence of ‖ · ‖γ and ‖ · ‖∞ will follow in exactly the same way.

For arbitrary x = α1b1 + · · ·+αnbn we have

‖x‖β ≤
n

∑
1
‖α jb j‖β =

n

∑
1
|α j|‖b j‖β ≤

(
n

∑
1
‖b j‖β

)
‖x‖∞

so that ‖x‖β ≤ M‖x‖∞ for M = ∑‖b j‖β . Now consider the unit sphere S = {x :
‖x‖∞ = 1} in (X ,‖ · ‖∞). Let

d = inf{‖x‖β : x ∈ S}.

We may find a sequence yk of unit vectors in S with ‖yk‖β → d. Write each yk as

yk = α1,kb1 + · · ·+αn,kbn
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and note that for all k and all 1 ≤ j ≤ n, |α j,k| ≤ 1 since yk is in S. Since we are only
concerned with finitely many j, we may find a subsequence k1,k2,k3, . . . such that
{a j,km} converges, as m → ∞, for each j = 1,2, . . . ,n. Denote the limit of {α j,km}
by α j. The corresponding subsequence ykm of course still has ‖ykm‖β → d. Set

y0 =
n

∑
j=1

α jb j.

We claim that ykm → y0 in ‖ · ‖∞. This follows from the calculation

‖ykm − y0‖∞ = ‖
n

∑
j=1

(α j,km −α j)b j‖∞ = max{|α j,km −α j| : 1 ≤ j ≤ n}→ 0.

This verifies the claim and shows that, in particular, ‖y0‖∞ = 1 and thus y0 �= 0.
Moreover, since by the first part of the proof

‖ykm − y0‖β ≤ M‖ykm − y0‖∞ → 0

we must have ‖y0‖β = lim‖ykm‖β = d, so that d �= 0. Finally for any nonzero x in
X ,

x
‖x‖∞

∈ S

and therefore ∥∥∥∥ x
‖x‖∞

∥∥∥∥
β
≥ ‖y0‖β

so that
‖x‖β ≥ ‖y0‖β ‖x‖∞ = d‖x‖∞

for nonzero d, as desired. ��

Proposition 4.3. Any finite-dimensional normed linear space is a Banach space,
and any finite-dimensional subspace of a normed linear space is necessarily a
closed subspace.

Proof. Let (X ,‖ · ‖) be the given normed linear space, and suppose that X is finite-
dimensional. Fix a basis {b1,b2, . . . ,bn} and let ‖·‖∞ be a second norm defined on X
as in the proof of Theorem 4.2. We leave it as Exercise 4.1 to check that (X ,‖ · ‖) is
complete if and only if (X ,‖ ·‖∞) is complete. The first statement in the proposition
will then follow if we can show that (X ,‖ · ‖∞) is complete. Suppose that {ym} is a
Cauchy sequence in (X ,‖ · ‖∞) and for each m write

ym =
n

∑
j=1

α j,mb j.

By the definition of ‖ · ‖∞, we must have that {α j,m}∞
m=1 is a Cauchy sequence of

scalars for each j, 1 ≤ j ≤ n. Hence there exists α̃ j so that α j,m → α̃ j as m → ∞, for
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each 1 ≤ j ≤ n. Define y0 = ∑n
j=1 α̃ jb j. It is easy to see that

‖ym − y0‖∞ → 0

and hence (X ,‖ · ‖∞) is complete.
Since the second statement of the proposition follows immediately from the first,

this completes the proof. ��

Proposition 4.4. Every linear map from a finite-dimensional normed linear space
into a normed linear space is continuous.

Proof. Suppose T : X → Y is as in the statement, and fix a basis {b1, . . . ,bn} in X .
Define a second norm ‖ · ‖∞ on X as in the proof of Theorem 4.2. The map T is
continuous with respect to the original norm on X if and only if it is continuous with
respect to the equivalent norm ‖ · ‖∞. We have

‖T x‖Y = ‖T (
n

∑
1

αkbk)‖Y ≤
n

∑
1
|αk|‖T bk‖Y

≤
(

max
1≤k≤n

|αk|
)( n

∑
k=1

‖T bk‖Y

)
=

(
n

∑
k=1

‖T bk‖Y

)
‖x‖∞

establishing the boundedness, and hence the continuity, of T . ��

An alternate proof for Proposition 4.4 is outlined in Exercise 4.5.

4.2 Compact Operators

The idea motivating this section is to find a subspace of B(X ,Y ) consisting of op-
erators which behave “like” linear maps on finite-dimensional spaces. One might
naturally first think of singling out the operators that have finite-dimensional range.
As we will see, this is not the most useful class of operators, so instead we make the
following definition.

Definition 4.5. If X and Y are Banach spaces and T : X → Y is linear, we will say
that T is compact if whenever {xn} is a bounded sequence in X , then {T xn} has a
convergent subsequence in Y .

Equivalently, T is compact if the image of any bounded set E in X under T has
compact closure; the verification of this statement is left to the reader. The definition
of compactness does not a priori require that the linear map T be bounded, but our
first result will say this is so.

Proposition 4.6. If T is compact, then T is bounded.
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Proof. If T is not bounded, we may find unit vectors vn in X with ‖T vn‖ ↑ ∞. This
implies that {T vn} cannot have a convergence subsequence, since if T vnk → y, then
‖T vnk‖→ ‖y‖. ��

Example 4.7. The forward shift S : �2 → �2 is not compact, since if en denotes the
standard nth basis vector for �2, {Sen} has no convergent subsequence.

Example 4.8. Any linear operator T : C
n → C

n is compact. To see this, let {xn}
be a bounded sequence of vectors in C

n; say ‖xn‖ ≤ M. Since T is bounded by
Proposition 4.4, {T xn} is a set of vectors in the closed ball B(0,R) in C

n, where R =
‖T‖M. Since closed balls in C

n are compact, {T xn} has a convergent subsequence.

The same idea can be used to show that if T is a bounded linear operator from X
to Y , where X and Y are Banach spaces, and the range of T is a finite-dimensional
subspace of Y , then T is compact. Such an operator T is called a finite rank operator.

The next result is easy, but important. Its proof is left as Exercise 4.6.

Proposition 4.9. Let X be a Banach space, and suppose S is in B(X), and that
T1,T2 are compact operators in B(X). The operators T1 +T2, ST1, T1S, and αT1 are
compact, for any scalar α .

This result says that the collection of all compact operators from X to X , which
we will denote K (X), is a linear subspace in B(X) which is also a two-sided ideal
(see Section 5.3 for more on this last terminology). That leads us to an important
question: Is K (X) a closed subspace of B(X)?

Theorem 4.10. Suppose X is a Banach space. If {Tn} is a sequence of compact
operators in B(X) and ‖Tn −T‖→ 0 for some T ∈ B(X), then T is compact.

Proof. The argument we will use is sometimes referred to as the “diagonal trick,”
for reasons that should become apparent. Let {xn} be a bounded sequence in X . To
show that T is compact, we must show that {T xn} has a convergent subsequence.
To do this, it suffices to show that {T xn} has a subsequence which is Cauchy in X .

Since T1 is compact, we may find a subsequence {x1,n}∞
n=1 of {xn} such that

T1(x1,n) converges in X as n → ∞. Now {x1,n}∞
n=1 is a bounded sequence and T2

is compact, so there is a subsequence {x2,n}∞
n=1 of {x1,n}∞

n=1 such that T2(x2,n) con-
verges. Of course we also have T1(x2,n) converging, since {x2,n}∞

n=1 is a subsequence
of {x1,n}∞

n=1 and T (x1,n) converges.
Continue, so that {xk,n}∞

n=1 is a subsequence of {xk−1,n}∞
n=1, with Tk(xk,n) con-

verging as n → ∞, as well as Tj(xk,n) for j = 1,2, . . . ,k−1. Schematically we have

x1,1 x1,2 x1,3 · · ·
x2,1 x2,2 x2,3 · · ·
x3,1 x3,2 x3,3 · · ·

...

xk,1 xk,2 xk,3 · · ·
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where each row is a subsequence of the preceding rows, and when we apply the
operators T1,T2, . . . ,Tk to the kth row, a convergent sequence results.

Consider the diagonal sequence {xn,n}, and note two things:

• This is a subsequence of the original sequence {xn}.
• For each k, {Tk(xn,n)}∞

n=1 converges as n → ∞, since {xn,n}∞
n=k is a subsequence

of {xk, j}∞
j=1.

This second property is just the observation that from the kth term on, {xn,n} is a
subsequence of the kth row, and the operator Tk applied to the kth row produces a
convergent subsequence.

We claim that {T xn,n}∞
n=1 converges. It is enough to show that it is a Cauchy

sequence in X . We are given that ‖xn‖ ≤ M for some finite value M. Let ε > 0 be
given. Since ‖T −Tn‖ → 0 we may find K so that ‖T −TK‖ < ε/(3M); K is now
fixed by this requirement. Since {TKxn,n} converges as n→∞, it is Cauchy and there
exists N such that if n,m ≥ N, then

‖TKxn,n −TKxm,m‖ <
ε
3
. (4.1)

Thus, for n,m ≥ N,

‖T xn,n −T xm,m‖ ≤ ‖T xn,n −TKxn,n‖+‖TKxn,n −TKxm,m‖+‖TKxm,m −T xm,m‖

≤ ε
3M

M +
ε
3

+
ε

3M
M = ε,

as desired. ��

We look next at some examples. Suppose that A is a diagonal operator on a
Hilbert space H with diagonal {α j} such that α j → 0; recall this means Ae j = α je j
where {e j} is an orthonormal basis for H . We claim that A is compact. To see this,
let An be the diagonal operator with diagonal {β j} where β j = α j for 1 ≤ j ≤ n
and β j = 0 for j > n. Note that An is a finite rank operator, since the range of An
is contained in the span of {e1,e2, . . . ,en}. Moreover, A−An is a diagonal opera-
tor with diagonal {γn} where γ j = 0 if 1 ≤ j ≤ n and γ j = α j for j > n, so that
‖A−An‖ = sup j>n |α j| → 0 as n → ∞. This shows that A is the limit of finite rank
operators, hence A is compact, by Theorem 4.10. This example also shows that the
finite rank operators form a proper subclass of the compact operators.

It is also the case that a compact diagonal operator must have its diagonal con-
verging to 0; see Exercise 4.8.

Although the result is true more generally, we will find it convenient in the next
result to restrict our attention to Hilbert spaces with a countable orthonormal basis.
Having a countable orthonormal basis is equivalent to being a separable Hilbert
space, that is, having a countable dense subset; see Exercise 1.23 in Chapter 1.
Nonseparable Hilbert spaces were not studied before 1934, and we will restrict our
attention to the separable case whenever convenient.



4.2 Compact Operators 83

Theorem 4.11. If T ∈ B(H ) is a compact operator on a Hilbert space H having
a countable orthonormal basis, there exists finite rank operators Tn with ‖T −Tn‖→
0; that is, every compact operator is a limit of finite rank operators.

Proof. There are three steps to the proof: Defining some likely candidates for the
operators Tn, showing that for each fixed h in H , Tnh → T h, and then using this
pointwise convergence to show ‖Tn −T‖→ 0.

For the first step, suppose that {e1,e2, . . .} is an orthonormal basis for the closure
of the range of T (a closed subspace of H ); notice it is only interesting if this basis
is infinite. Let Pn be the projection onto the span of the first n vectors e1,e2, . . . ,en.
Notice that we are using here the fact that this span is a closed subspace of H ,
which follows from Proposition 4.3 or Exercise 1.21 in Chapter 1. Define Tn = PnT ,
so that Tn is clearly a finite rank operator.

Now we check convergence of the Tn to T at each point of H . Let h be any
vector in H and set k = T h. We have

Tnh = PnT h = Pnk =
n

∑
j=1

〈k,e j〉e j,

where we are using the result of Exercise 1.21 in Chapter 1, and

T h =
∞

∑
j=1

〈k,e j〉e j,

since {e j} is an orthonormal basis for the closure of the range of T . Thus

‖Tnh−T h‖2 =
∞

∑
j=n+1

|〈k,e j〉|2,

which tends to 0 as n → ∞, since ∑∞
j=1 |〈k,e j〉|2 = ‖T h‖2 < ∞.

Having established this pointwise convergence of Tn to T , we now consider ‖Tn−
T‖. Let Bc denote the closed unit ball in H . Since T is a compact operator, the
closure of T (Bc) is compact. Given ε > 0 the collection of open balls B(T h,ε),
centered at points T h for h ∈ Bc and with radius ε , forms an open cover of the
closure of T (Bc). By compactness, we may select a finite subcover, say

T (Bc) ⊆
m⋃

j=1

B(T h j,ε), (4.2)

for some positive integer m and some h j ∈ Bc. By our pointwise estimate, for each
j, 1 ≤ j ≤ m, there is an integer N( j) so that

‖Tnh j −T h j‖ < ε

if n ≥ N( j). Set N∗ = max1≤ j≤m N( j) and let h be an arbitrary unit vector in H . By
condition (4.2) we may find a value of j, 1 ≤ j ≤ m, so that ‖T h−T h j‖ < ε . For
any n ≥ N∗ we have
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‖Tnh−T h‖ ≤ ‖Tnh−Tnh j‖+‖Tnh j −T h j‖+‖T h j −T h‖
= ‖PnT (h−h j)‖+‖Tnh j −T h j‖+‖T (h−h j)‖
≤ 2‖T (h−h j)‖+ ε
≤ 3ε,

where we have used the fact that the projection Pn has norm 1. Since h was an
arbitrary unit vector, this calculation shows that if n ≥ N∗, then ‖Tn −T‖ ≤ 3ε , and
since ε is arbitrary, this shows that ‖Tn −T‖→ 0 as n → ∞, as desired. ��

This theorem is true even without the hypothesis that H has a countable basis,
that is, even for nonseparable Hilbert spaces; the necessary additions to the proof
for this case can be found in [8]. It makes sense to ask what happens if H is re-
placed by a Banach space X , i.e., is every compact operator in B(X) a limit of finite
rank operators? This question, known as the approximation problem, was formu-
lated by T. Hildebrandt in 1931, and has been a problem of fundamental importance
in Banach space theory. Over time, many equivalent properties were discovered, and
various related approximation properties were defined. In 1973, Per Enflo caused a
sensation by constructing a counterexample to the original approximation problem.
Enflo’s work on this problem also yielded a negative answer to another long-open
problem in functional analysis: Does every separable Banach space have a Schauder
basis, that is, in any Banach space X is there always a sequence {x j} such that each
x ∈ X can be uniquely written as

x =
∞

∑
j=1

c jx j = lim
n→∞

(
n

∑
j=1

c jx j

)
?

It is true that in a Banach space with a Schauder basis, every compact operator is a
limit of finite rank operators, and this includes all of the familiar Banach spaces.

Enflo’s work provided a solution to Problem #153 in the “Scottish Problem
Book”, posed by S. Mazur in 1936, for which a prize of “a live goose” had been
offered1. When Enflo was lecturing in Warsaw in 1972, Mazur presented him with
the prize goose promised 36 years earlier.

The next result is sometimes phrased as “K (H ) is self-adjoint” when H is a
Hilbert space.

Proposition 4.12. If T is in B(H ) for a separable Hilbert space H , then T is
compact if and only if T ∗ is compact.

Proof. Since T ∗∗ = T , it suffices to prove that T compact implies T ∗ is compact. By
Theorem 4.11, if T is compact, there are finite rank operators Tn that converge to T .
Now ‖Tn −T‖ = ‖T ∗

n −T ∗‖ by Proposition 2.14, and we will be done by an appeal
to Theorem 4.10 if we can show that each T ∗

n is finite rank. Let Pn be the projection
of H onto the range of Tn, a closed subspace of H . Each Pn is finite rank since
each Tn is. Since Pn is a projection, PnTn = Tn, and taking adjoints, T ∗

n P∗
n = T ∗

n . But

1 See Section 3.5.
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projections are self-adjoint, so we have T ∗
n = T ∗

n Pn. It is easy to see that the finite
rank operators form a (two-sided) ideal (see Exercise 4.6), so we conclude that T ∗

n
is finite rank, and thus T ∗ is compact. ��

Since Theorem 4.11 extends to nonseparable Hilbert spaces, so does Proposi-
tion 4.12. The implication “T compact implies T ∗ compact” also extends to the Ba-
nach space setting, where it sometimes goes by the name of “Schauder’s Theorem”;
see [8].

To explore a large class of compact operators, we give a definition.

Definition 4.13. Suppose that H is a Hilbert space with a countable orthonormal
basis, and let T be in B(H ). We say that T is Hilbert–Schmidt if there is an or-
thonormal basis {en}∞

1 of H such that ∑∞
n=1 ‖Ten‖2 < ∞.

It is convenient to know that the sum appearing in this definition is actually inde-
pendent of the choice of basis; this is the next result, which is due to von Neumann.

Proposition 4.14. Suppose that T is a bounded linear operator on a separable
Hilbert space H and {en}∞

n=1 is an orthonormal basis for H such that

∞

∑
n=1

‖Ten‖2 < ∞.

For any other orthonormal basis { fn}∞
n=1, we have

∞

∑
n=1

‖T fn‖2 =
∞

∑
n=1

‖Ten‖2.

Proof. The proof relies on repeated applications of Parseval’s identity. For each n
we have

T fn =
∞

∑
j=1

〈T fn, f j〉 f j and ‖T fn‖2 =
∞

∑
j=1

|〈T fn, f j〉|2. (4.3)

Similarly, for each n and each j,

‖Ten‖2 =
∞

∑
j=1

|〈Ten, f j〉|2, (4.4)

‖T ∗ f j‖2 =
∞

∑
n=1

|〈T ∗ f j,en〉|2, (4.5)

‖T ∗ f j‖2 =
∞

∑
n=1

|〈T ∗ f j, fn〉|2. (4.6)

Thus

∞

∑
n=1

‖T fn‖2 =
∞

∑
n=1

∞

∑
j=1

|〈T fn, f j〉|2 =
∞

∑
j=1

∞

∑
n=1

|〈T ∗ f j, fn〉|2 =
∞

∑
j=1

‖T ∗ f j‖2,
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where we have used Equations (4.3) and (4.6). Similarly, by Equations (4.4) and
(4.5)

∞

∑
n=1

‖Ten‖2 =
∞

∑
n=1

∞

∑
j=1

|〈Ten, f j〉|2 =
∞

∑
j=1

∞

∑
n=1

|〈T ∗ f j,en〉|2 =
∞

∑
j=1

‖T ∗ f j‖2

so that
∞

∑
n=1

‖T fn‖2 =
∞

∑
n=1

‖Ten‖2,

as desired. ��

As a corollary of the proof of the last result, we see that if T is Hilbert–Schmidt,
then so is T ∗. The next result shows that a Hilbert–Schmidt operator is compact.

Theorem 4.15. Every Hilbert–Schmidt operator on a separable Hilbert space is
compact.

Proof. Let A be Hilbert–Schmidt on H . We will exhibit A as a limit of finite rank
operators and use Theorem 4.10 to conclude A is compact. Fix an orthonormal basis
{ek}∞

1 of H , so that ∑∞
k=1 ‖Aek‖2 < ∞. For each n ≥ 1, define An by

Anh = An

(
∞

∑
k=1

ĥ(k)ek

)
=

n

∑
k=1

ĥ(k)Aek,

where ĥ(k) = 〈h,ek〉. Clearly An is linear, and An is finite rank, since the range of An
is contained in the span of the vectors Ae1,Ae2, . . . ,Aen. Moreover, for any h ∈ H ,

‖(A−An)h‖ = ‖
∞

∑
k=n+1

ĥ(k)Aek‖ ≤
(

∞

∑
k=n+1

|ĥ(k)|2
) 1

2
(

∞

∑
k=n+1

‖Aek‖2

) 1
2

so that

‖A−An‖ ≤
(

∞

∑
k=n+1

‖Aek‖2

) 1
2

,

which tends to 0 as n → ∞. ��

The next result gives a large class of examples of Hilbert–Schmidt operators,
and explains how they arise naturally. It concerns operators on L2(X ,µ) for some
measure space (X ,µ).

Theorem 4.16. Suppose that L2(X ,µ) is a separable Hilbert space and K is an
integral operator on L2(X ,µ), with kernel k(x,y) ∈ L2(X ×X). The operator K is
Hilbert–Schmidt.

Proof. Let {en}∞
n=1 be a basis for L2(X ,µ). For fixed x ∈ X , write kx(y) = k(x,y);

then kx is in L2(µ) for almost every x and we have
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(Ken)(x) =
∫

X
k(x,y)en(y)dµ(y)

=
∫

X
kx(y)en(y)dµ(y)

= 〈kx,en〉,

so that
‖Ken‖2 =

∫
X
|Ken(x)|2dµ(x) =

∫
X
|〈kx,en〉|2dµ(x)

and
∞

∑
n=1

‖Ken‖2 =
∞

∑
n=1

∫
X
|〈kx,en〉|2dµ(x) =

∫
X

∞

∑
n=1

|〈kx,en〉|2dµ(x).

Now it is easy to see that {en}∞
n=1 is also an orthonormal basis for L2(X ,µ), so that

〈kx,en〉 are the Fourier coefficients of kx with respect to this basis. By Parseval’s
identity,

∞

∑
n=1

|〈kx,en〉|2 = ‖kx‖2.

Thus we have

∞

∑
n=1

‖Ken‖2 =
∫

X
‖kx‖2dµ(x)

=
∫

X

(∫
X
|k(x,y)|2dµ(y)

)
dµ(x)

=
∫

X×X
|k(x,y)|2d(µ ×µ) < ∞

since k ∈ L2(µ ×µ). ��

4.3 A Preliminary Spectral Theorem

Recall from linear algebra, that if M is a self-adjoint n× n matrix (meaning it is
equal to its conjugate transpose M∗) then all the eigenvalues of M are real, and there
is a unitary matrix U (meaning U∗ = U−1) such that UMU−1 is real and diagonal.
There is an orthonormal basis for C

n consisting of eigenvectors of M. In fact, if
M is normal, that is, if M∗M = MM∗, then M is unitarily diagonalizable and C

n

has an orthonormal basis of eigenvectors. Results that are generalizations of this to
operators on Hilbert spaces are called “spectral theorems.” They appear with several
quite distinct-looking formulations, and their connection to the finite-dimensional
linear algebra results can seem somewhat obscured.

In this section we will obtain a spectral theorem for compact self-adjoint op-
erators on a Hilbert space; one can view this as a complete description of such
operators. Later, in Chapter 6, we will obtain a much more general spectral theorem
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for bounded normal operators, at which point we will revisit the main results of this
section.

Our first goal is to obtain some information about the eigenvalues of compact
self-adjoint operators in B(H ). The notion of an eigenvalue of an operator in
B(H ) is the expected one, and the definition looks the same for operators on
Hilbert or Banach spaces.

Definition 4.17. We say that λ ∈ C is an eigenvalue of T ∈ B(X), where X is a
Banach space, if there is a nonzero vector x in X so that T x = λx.

When λ is an eigenvalue of T ∈ B(X), the kernel of T − λ I is called the
eigenspace corresponding to the eigenvalue λ , and the nonzero vectors in the
eigenspace are called eigenvectors. For a compact operator T with nonzero eigen-
value λ , the kernel of T − λ I is necessarily finite-dimensional; see Exercise 4.10
and Exercise 4.25.

We will show that a compact self-adjoint operator T always has either ‖T‖ or
−‖T‖ as an eigenvalue. Before proceeding to the proof of this, we need a lemma.
The role of self-adjointness in it, and in the next several results, is contained in the
following observation: If T is self-adjoint, then for any vectors x and y, 〈T x,y〉 =
〈x,Ty〉 = 〈Ty,x〉, and so in particular 〈T z,z〉 must be real for all vectors z.

For any operator T in B(H ), it is easy to see that

‖T‖ = sup{|〈T x,y〉| : ‖x‖ = 1,‖y‖ = 1}.

The next result refines this for self-adjoint operators.

Lemma 4.18. Suppose T is a self-adjoint operator in B(H ) for some Hilbert
space H . We have

‖T‖ = sup
‖x‖=1

|〈T x,x〉| .

Proof. Set M = sup‖x‖=1 |〈T x,x〉|. Our goal is to show M = ‖T‖. We make three
easy observations

(a) For each h �= 0 ∈ H , |〈T h,h〉| = |〈T (‖h‖ h
‖h‖ ),‖h‖ h

‖h‖ 〉| ≤ M‖h‖2.
(b) Since |〈T h,h〉| ≤ ‖T h‖‖h‖ ≤ ‖T‖‖h‖2 we must have M ≤ ‖T‖, by the defini-

tion of M.
(c) For all f ,g ∈ H ,

〈T ( f +g), f +g〉−〈T ( f −g), f −g〉 = 4Re 〈T f ,g〉.

This follows from expanding 〈T ( f ± g), f ± g〉, using the self-adjointness of
T to write

〈T f ,g〉+ 〈Tg, f 〉 = 〈T f ,g〉+ 〈T f ,g〉 = 2Re 〈T f ,g〉.

Since T is self-adjoint, 〈T x,x〉 and 〈Ty,y〉 are real for any x,y ∈H , and we have
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〈T x,x〉−〈Ty,y〉 ≤ |〈T x,x〉|+ |〈Ty,y〉| (4.7)
≤ M(‖x‖2 +‖y‖2)

=
M
2

(‖x− y‖2 +‖x+ y‖2),

where we have used the observation in (a) and the parallelogram equality. Now let
v be any unit vector and suppose T v �= 0. Let s = ‖T v‖ and put

x = v+
1
s

T v and y = v− 1
s

T v

in Equation (4.7). We obtain

〈T x,x〉−〈Ty,y〉 ≤ M
2

(∥∥∥∥2
s

T v
∥∥∥∥

2

+‖2v‖2

)
= 4M.

Since by the calculation in (c) we have

〈T x,x〉−〈Ty,y〉 = 4Re 〈T v,
1
s

T v〉 = 4‖T v‖

we conclude that ‖T v‖ ≤ M for any unit vector v and hence ‖T‖ ≤ M. Since we had
already observed the reverse inequality, we are done. ��

Theorem 4.19. If T is a compact self-adjoint operator in B(H ), then at least one
of the numbers ‖T‖ and −‖T‖ is an eigenvalue of T .

Proof. Without loss of generality we assume ‖T‖ �= 0, else T = 0 and 0 is trivially
an eigenvalue of T . By Lemma 4.18 we have ‖T‖ = sup‖x‖=1 |〈T x,x〉|. Find unit
vectors xn with |〈T xn,xn〉|→ ‖T‖. Since T is self-adjoint, each 〈T xn,xn〉 is real, and
passing to a subsequence if necessary (which we don’t relabel) we may assume that
〈T xn,xn〉 → λ where either λ = ‖T‖ or λ = −‖T‖. Since λ is real, we have

‖T xn −λxn‖2 = ‖T xn‖2 −2Re 〈T xn,λxn〉+ |λ |2‖xn‖2

= ‖T xn‖2 −2λ 〈T xn,xn〉+λ 2

≤ ‖T‖2 −2λ 〈T xn,xn〉+λ 2

= 2λ 2 −2λ 〈T xn,xn〉.

As n → ∞, 2λ 2 −2λ 〈T xn,xn〉 → 0, so that

T xn −λxn → 0. (4.8)

Since T is compact, {T xn} has a convergent subsequence, say T xnk → y. By (4.8),
we have λxnk → y, and thus λT xnk → Ty. But λT xnk → λy, so that Ty = λy. Are
we done? Yes, if we can show that y �= 0. We have

‖T xnk‖ = ‖λxnk +T xnk −λxnk‖
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≥ ‖λxnk‖−‖T xnk −λxnk‖
= |λ |−‖T xnk −λxnk‖,

where we know that ‖T xnk − λxnk‖ → 0 and λ �= 0. But T xnk → y, so that ‖y‖ =
limn→∞ ‖T xnk‖ �= 0. ��

The next result applies to any self-adjoint operator on a Hilbert space, compact
or not.

Theorem 4.20. Suppose that T is self-adjoint in B(H ). Every eigenvalue of T is
real, and the eigenvectors for distinct eigenvalues are orthogonal.

Proof. Suppose that for some nonzero vector h and some scalar λ , T h = λh. Since
〈T h,h〉 = 〈λh,h〉 = λ‖h‖2 and 〈T h,h〉 = 〈h,T h〉 = 〈h,λh〉 = λ‖h‖2 we must have
λ = λ , and λ is real.

If λ and µ are distinct (real) eigenvalues for T with T h = λh and T g = µg then
0 = 〈T h,g〉−〈h,T g〉 = λ 〈h,g〉−µ〈h,g〉 = (λ −µ)〈h,g〉 and 〈h,g〉 = 0. ��

The reader is cautioned that this result does not say that a self-adjoint opera-
tor must have eigenvalues. In contrast to the conclusion of Theorem 4.19, neither
compactness of T nor self-adjointness of T is (separately) sufficient to guarantee
the existence of an eigenvalue for T . Exercises 4.14 and 4.15 ask you to verify this
assertion.

Theorem 4.21. Suppose that T is a compact self-adjoint operator in B(H ). The
set of eigenvalues of T is a finite or countably infinite set of real numbers; if infinite,
the eigenvalues form a sequence that converges to zero.

Proof. By Theorem 4.20, all the eigenvalues are real. Also observe that if T x = λx,
then |λ | ≤ ‖T‖, so that no eigenvalue has absolute value greater than ‖T‖. There is
nothing further to do if the set of eigenvalues is finite, so suppose it is infinite. We
claim that for each ε > 0 , there are at most finitely many eigenvalues with absolute
value at least ε . Suppose this is not the case. We may then find a sequence {λ j}
of distinct eigenvalues, with |λ j| ≥ ε and unit eigenvectors y j with Ty j = λ jy j. By
Theorem 4.20 the y j are orthogonal, and thus

‖Ty j −Tyk‖2 = ‖λ jy j −λkyk‖2 = |λ j|2 + |λk|2 ≥ 2ε2.

This is a contradiction, since the compactness of T guarantees that {Ty j} has a
convergent subsequence. Thus the claim is verified and we have shown:

(a) The set of eigenvalues is countable, since {λ : λ is an eigenvalue and |λ | ≥
1/n} is finite for every positive integer n.

(b) If the eigenvalues are a countably infinite set, they form a sequence which
converges to zero.

This completes the proof. ��
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A version of this result holds for arbitrary compact operators on a Hilbert or
Banach space. The eigenvalues need not be real, but if infinite they still form a
sequence converging to zero.

In the next result, we write T M for {T m : m ∈ M}.

Lemma 4.22. Suppose that T is a bounded operator on a Hilbert space H and
that M is a closed subspace of H . If T M ⊆ M, then T ∗M⊥ ⊆ M⊥. Conversely, if
T ∗M⊥ ⊆ M⊥, then T M ⊆ M.

Proof. Since T ∗∗ = T and (M⊥)⊥ = M, only the first assertion needs to be verified.
Let n be in M⊥ and let m be in M. We must show that T ∗n ⊥ m, or equivalently,
〈T ∗n,m〉 = 0. We have

〈T ∗n,m〉 = 〈n,T m〉 = 0

since T m is in M. ��

The next corollary is immediate.

Corollary 4.23. If T is a self-adjoint operator in B(H ), and if T M ⊆ M for some
closed subspace M, then T M⊥ ⊆ M⊥.

A closed subspace M is called an invariant subspace for T ∈B(H ) if T M ⊆ M.
It is called a reducing subspace for T if both T M ⊆ M and T M⊥ ⊆ M⊥. By virtue
of Lemma 4.22, M is reducing if and only if it is invariant for both T and T ∗. For an
easy example, note that the subspaces

NE = { f ∈ L2[0,1] : f (x) = 0 almost everywhere on E}

for any measurable subset E of [0,1] are reducing subspaces for the operator Mx of
multiplication by ϕ(x) = x on (L2[0,1],dx). On the other hand,

N = { f ∈ L2
a(D) : f (0) = 0}

is an invariant subspace for the multiplication operator Mz on L2
a(D), but it is not a

reducing subspace since, for example, M∗
z (z) is the constant 1/2, which is not in N.

Further examples can be found in Exercise 4.17.
The terminology “reducing subspace” is suggestive of how these subspaces are

used: Since H = M⊕M⊥, if M is a reducing subspace of T then the study of T on
H is “reduced” to its study on the (smaller) Hilbert spaces M and M⊥. We’ll see this
in action in the next result, which is the spectral theorem for compact self-adjoint
operators. Our presentation follows that in [48].

Theorem 4.24 (Spectral Theorem, Preliminary Version). Let T �= 0 be a com-
pact, self-adjoint operator in B(H ). There exists a finite or countably infinite or-
thonormal set {gn} of eigenvectors of T , with corresponding real eigenvalues {λn},
such that

T x = ∑
n

λn〈x,gn〉gn.

If {λn} is infinite, then λn → 0.
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Proof. The fact that all eigenvalues are real has already been shown. For the rest we
give an inductive construction. We know that λ1 ≡ ‖T‖ or −‖T‖ is an eigenvalue
of T . Pick a corresponding unit eigenvector g1. Let M1 be the span of {g1}. Since
T (αg1) = αλ1g1, M1 is an invariant subspace for T . By Corollary 4.23, it is a re-
ducing subspace, i.e., T M⊥

1 ⊆ M⊥
1 . Let T2 be the restriction of T to the Hilbert space

M⊥
1 ≡ H2. Now, the restriction of a compact operator to an invariant subspace is

compact (see Exercise 4.21), so T2 ∈ B(H2) is compact. We claim that T2 is also
self-adjoint: if x,y are in M⊥

1 , then

〈T ∗
2 x,y〉 = 〈x,T2y〉 = 〈x,Ty〉 = 〈T x,y〉 = 〈T2x,y〉,

where the fact that T is self-adjoint is used. Applying Theorem 4.19 again, this time
to T2 ∈ B(H2), we see that T2 has an eigenvalue λ2 with λ2 = ‖T2‖ or −‖T2‖, and
corresponding unit eigenvector g2 ∈ H2. Notice that |λ2| ≤ |λ1|, and of course, λ2
is also an eigenvalue of the original operator T . Since g2 is in H2 = M⊥

1 , g2 ⊥ g1.
Proceed inductively: Suppose we have obtained pairwise orthogonal unit eigen-

vectors g1,g2, . . . ,gn of T corresponding to real eigenvalues λ1,λ2, . . . ,λn with
|λ j| = ‖Tj‖, where T1 = T , and Tj is the restriction of T to

[span {g1,g2, . . . ,g j−1}]⊥

for 1 < j ≤ n. Let Tn+1 be the restriction of T to

Hn+1 ≡ [span {g1,g2, . . . ,gn}]⊥.

Since span {g1,g2, . . . ,gn} is invariant under T , so is Hn+1, by Corollary 4.23.
Moreover, as above, Tn+1 : Hn+1 → Hn+1 is compact and self-adjoint, and thus
Tn+1 must have eigenvalue λn+1, equal to either ‖Tn+1‖ or −‖Tn+1‖, and we choose
a corresponding unit eigenvector gn+1 ∈ Hn+1; this is of course also an eigenvector
for T on H . By the definition of Hn+1, gn+1 is orthogonal to g j for 1 ≤ j ≤ n.

As we continue this process, one of two things will happen. Either there is a
smallest m with Tm = 0, in which case the process terminates with the construction
of gm−1, or Tn �= 0 for all n. In the first case, consider, for arbitrary x in H ,

y ≡ x−
m−1

∑
j=1

〈x,g j〉g j.

Since ∑m−1
1 〈x,g j〉g j is the projection of x onto span {g1,g2, . . . ,gm−1}, the projec-

tion theorem says that y is in the orthogonal complement of this span, that is, y is in
Hm. Thus we have

0 = Tmy = Ty = T x−
m−1

∑
j=1

〈x,g j〉T g j = T x−
m−1

∑
j=1

λ j〈x,g j〉g j,

which says that
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T x =
m−1

∑
j=1

λ j〈x,g j〉g j

for every x in H , giving the desired conclusion in this case.
In the case that Tn is not zero for any n, note while there may be repeated values

in the sequence λ1,λ2, . . ., by Exercise 4.10 each value appears only finitely many
times. This observation, together with Theorem 4.21, says λn → 0. Again consider
an arbitrary x in H . We wish to show

T x =
∞

∑
j=1

λ j〈x,g j〉g j,

i.e., that

T x = lim
n→∞

n−1

∑
j=1

λ j〈x,g j〉g j.

To this end, set

yn = x−
n−1

∑
j=1

〈x,g j〉g j

and notice that yn is in Hn and ∑n−1
1 〈x,g j〉g j is in its orthogonal complement. In

particular, this guarantees by the Pythagorean theorem that ‖x‖ ≥ ‖yn‖. Now

‖Tyn‖ = ‖Tnyn‖ ≤ ‖Tn‖‖yn‖ = |λn|‖yn‖ ≤ |λn|‖x‖.

We know that |λn| → 0 as n → ∞ so we must have

‖T x−
n−1

∑
j=1

λ j〈x,g j〉g j‖ = ‖Tyn‖ ≤ |λn|‖x‖→ 0,

which is our desired conclusion. ��

We note that the λn appearing in the statement of the last result must form a
complete list of all the nonzero eigenvalues of T . To see this, observe that if T z = µz
for some µ distinct from all the λn, then z ⊥ gn for all n, since the eigenvectors
corresponding to distinct eigenvalues are necessarily orthogonal for any self-adjoint
operator (Theorem 4.20). Hence

∑λn〈z,gn〉gn = 0 = T z = µz

and z = 0.
In the last result, the gn are an orthonormal sequence, but need not be an or-

thonormal basis for H . The next result explores this further.

Corollary 4.25. If T is a compact self-adjoint operator on a separable Hilbert space
H , then there is an orthonormal basis {en} of H consisting of eigenvectors for T
such that
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T x = ∑
n

λn〈x,en〉en

for every x in H , where λn is the eigenvalue of T corresponding to the eigenvector
en. This sum is either finite or countably infinite.

Proof. By Theorem 4.24, there is a finite or infinite orthonormal sequence {gn}
such that

T x = ∑
n

λn〈x,gn〉gn (4.9)

and T gn = λngn. By the construction in Theorem 4.24, the λn are nonzero. Let {hm}
be an orthonormal basis for ker T ; this is at most countable since H is assumed to
be separable. We have T hm = 0 and each hm is an eigenvector of T . Since eigenvec-
tors corresponding to distinct eigenvalues are orthogonal, hm ⊥ gn for all m,n. Thus
{gn}∪{hm} is an orthonormal set in H consisting of eigenvectors of T . We claim
it is an orthonormal basis for H . By Equation (4.9),

x−∑
n
〈x,gn〉gn

is in ker T so that
x−∑

n
〈x,gn〉gn = ∑

m
cmhm

for some coefficients cm; in fact we must have

cm = 〈x−∑
n
〈x,gn〉gn,hm〉 = 〈x,hm〉

since hm ⊥ gn. We have shown that an arbitrary x ∈ H can be written as

x = ∑
n
〈x,gn〉gn +∑

m
〈x,hm〉hm.

Thus {gn}∪{hm} is a countable orthonormal basis for H . If we relabel this as {en},
we are done. ��

4.4 The Invariant Subspace Problem

The invariant subspace problem, which has been variously described as “the most
fundamental question in operator theory” [3] or “the most famous unsolved prob-
lem in the theory of bounded linear operators” [35], asks whether every T ∈ B(X)
has a nontrivial closed invariant subspace; in this section the term “invariant sub-
space” will always mean a nontrivial closed invariant subspace. One can ask this
question when X is a Banach space or when X is a Hilbert space and this distinction
is important. Of course, if T has an eigenvalue, then the corresponding eigenspace
is invariant for T , but it is easy to give examples of operators with no eigenvalues
but yet having invariant subspaces (see Exercises 4.14 and 4.15).
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In 1950, rediscovering unpublished work of von Neumann, Nachman Aronszajn
showed that a compact operator on a Hilbert space always has an invariant subspace.
A few years later Aronszajn and Kennan Smith generalized this result to compact
operators on Banach spaces. Paul Halmos described the situation subsequent to this
work as follows [18]:

Smith pointed out, I might almost say complained, that the proof was “tight”. It left no room
for modifications and generalizations; it proved exactly what it was designed to prove, no
more.... Aronszajn taught me the proof on a restaurant napkin several months before the
paper appeared. I understood it, I cherished it, and along with many others I kept trying to
“loosen” it so as to be able to apply it more broadly—but all to no avail (p. 320).

There the matter stayed until a breakthrough occured in 1966, and it was shown
that any operator T on a Hilbert space H for which there is a nonzero polynomial
p(z) = anzn + · · ·+ a1z + a0 such that p(T ) = anT n + · · ·+ anT + a0I is compact
(such an operator T is said to be polynomially compact) has an invariant subspace.
The first proof of this, by Allen Bernstein and Abraham Robinson, used methods of
“nonstandard analysis,” but Halmos quickly reworked their argument to formulate
them in classical standard analysis, publishing the resulting work as a short paper
later the same year.

In 1973, the young Russian mathematician Victor Lomonosov caused a sensa-
tion by announcing a theorem which included the following result: Any operator
on an infinite-dimensional complex Banach space which commutes with a nonzero
compact operator has an invariant subspace. Even more, he shows that any opera-
tor which commutes with an operator (not a scalar multiple of the identity) which
commutes with a nonzero compact operator has an invariant subspace. At first it
was not clear whether this latter description might include all bounded linear oper-
ators. While Lomonosov’s proof was short and elegant, an even briefer and more
accessible proof was later provided by Hugh Hilden; the reader can find the de-
tails of Hilden’s argument in [43], pp. 120–121. This particular thread of work on
the invariant subspace problem—starting with von Neumann and culminating with
Lomonosov and Hilden—proceeds from the philosophy that compact operators gen-
eralize finite-dimensional operators.

Another thread in the invariant subspace story is anchored by the statement that
normal operators on a Hilbert space always have invariant subspaces (we’ll see this
in Chapter 6). One then tries to find other classes of operators, related in some way
to a weakening of the normality hypothesis, which can be shown to have invariant
subspaces. In particular, the class of subnormal operators (see [5]) on Hilbert spaces
all have invariant subspaces.

As of this writing, the invariant subspace problem is still open for bounded linear
operators on Hilbert spaces. For Banach space, though, the situation was resolved by
work of Enflo published in 1987. He constructs a Banach space X and an operator
in B(X) with no invariant subspace. While the date of publication is 1987, Enflo’s
announcement of the result, and a manuscript containing the example, dates from
1975. Certainly part of the explanation for the long delay before formal publication
lies in the complexity of Enflo’s construction. In fact, in reviewing the 100-page
long Acta Mathematica publication, the reviewer A.M. Davie writes [9]:
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[Enflo’s work]. . . is a remarkable achievement; however the latter part of his paper is so
impenetrable that it is destined to be admired rather than read.

At the same time, the basic idea that underlies Enflo’s construction is a natural one
in a sense that we will be better able to describe in Section 6.1. He constructs the
space X as he goes, by putting a norm on the space of polynomials so that, with the
resulting space completed to a Banach space, the shift operator (multiplication by
the independent variable) has no invariant subspace. So here the space is compli-
cated but the operator is simple. B. Beauzamy has published what is essentially an
exposition of Enflo’s example, with some considerable simplifications. Counterex-
amples have also been given by C. Read; one of these is an example with a simple
space (�1) but a complicated operator.

Related to the question of existence of invariant subspaces is the problem of
determining all of the invariant subspaces of a given operator. Generally speaking,
this is a very difficult problem, although there have been some notable successes.
For example, the invariant subspaces of the shift operator Mz of multiplication by
z on the Hardy space H2 have been determined and have a beautiful structure (see
[40]). The operator of multiplication by z on the Bergman space L2

a(D) is known to
have an extremely complicated lattice of invariant subspaces, and an understanding
of this structure is matter of on-going work.

4.5 Introduction to the Spectrum

We start with a definition, which will be of fundamental importance to us.

Definition 4.26. If T : X → X is a bounded linear operator on a Banach space X , the
set of complex numbers λ for which T −λ I is not invertible is called the spectrum
of T .

We will denote the spectrum of T by σ(T ). The spectrum of an operator on
a Hilbert or Banach spaces contains vital information about the operator. It is an
“invariant” of the operator in the sense of the following result.

Proposition 4.27. If T is an operator in B(X) for a Banach space X, and if S is an
invertible operator in B(X), then σ(T ) = σ(S−1T S).

Proof. If T − λ I is invertible, with inverse V , then S−1T S − λ I = S−1(T − λ I)S
has inverse S−1V S. Conversely, if S−1(T −λ I)S is invertible, then applying the first
part we see that S[S−1(T −λ I)S]S−1 = T −λ I is invertible. Since S−1(T −λ I)S =
S−1T S−λ I, this completes the proof. ��

When T1 and T2 in B(X) are related by T2 = S−1T1S for some invertible
S ∈ B(X), we say that T1 and T2 are similar. Thus the last result says that similar
operators have the same spectrum. The reader can show, by means of 2×2 matrices
(that is, by operators in B(C2)), that the converse is not true and two operators can
have the same spectrum but fail to be similar.
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It is helpful to think about how a complex number λ could get into σ(T ). Recall
that an operator T −λ I is invertible if and only if T −λ I is bijective. So one way
for λ to be a point of σ(T ) is for T − λ I to fail to be one-to-one. By linearity,
this happens if and only if there is a vector g �= 0 with T g = λg, and thus λ is an
eigenvalue of T .

If λ ∈ σ(T ) but λ is not an eigenvalue of T , then it must be the case that T −λ I
is not surjective. It sometimes helps to distinguish two ways this could happen: Ei-
ther the range of T −λ I, while not all of X , is at least dense in X , or the closure of
the range of T −λ I is a proper subspace of X . These two “parts” of the spectrum
are called, respectively, the continuous spectrum and the residual spectrum. In some
sense this last piece is the most intractable part of the spectrum, and we’ll see later
that for certain classes of operators (for example, self-adjoint operators on a Hilbert
space) the residual spectrum is empty. There are other useful ways of distinguishing
various pieces of the spectrum; some of these (approximate eigenvalues, compres-
sion spectrum, essential spectrum) will be discussed in Sections 5.2 and 5.3.

In all of this discussion the reader should keep in mind the much simpler situation
for a linear operator on a finite-dimensional space, where the operator is bijective
if and only if it is injective. In other words, for an operator on a finite-dimensional
space, the spectrum is just the set of eigenvalues of the operator.

Example 4.28. Consider the operator Mx of multiplication by ϕ(x) = x on the
Hilbert space (L2[0,1],dx). In Exercise 4.15 you are asked to show that Mx has no
eigenvalues. We claim, however, that each 0 ≤ λ ≤ 1 is in σ(Mx). To see this, it is
helpful to recall that an invertible operator is bounded below (meaning ‖Ag‖≥ δ‖g||
for some positive δ and all g; see Definition 2.24), and to observe that

Mx −λ I = Mx−λ ,

the operator of multiplication by x−λ . If 0 < λ < 1 choose N sufficiently large that
if n ≥ N then

En ≡ [λ − 1
n
,λ +

1
n
] ⊆ [0,1]

and set

gn =
√

n
2

χEn

for all n ≥ N. The gn are unit vectors in L2[0,1] and

‖(Mx −λ I)gn‖2 = ‖(x−λ )gn‖2 =
n
2

∫
En

|x−λ |2dx ≤ n
2

(
1
n

)2 2
n

=
1
n2 .

This computation shows that Mx −λ I is not bounded below, and hence not invert-
ible. A similar argument, with En = [0,1/n] or En = [1− (1/n),1] applies to show
that λ = 0 and λ = 1 are also in σ(Mx).

Finally, we claim that no point outside of the interval [0,1] can lie in σ(Mx). If
λ ∈ C\[0,1], then
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1
x−λ

∈ L∞[0,1]

and M1/(x−λ ) is a bounded operator which is inverse to Mx −λ I.

Many further examples of concrete operators and their spectra will appear in later
sections, when we have a bit more machinery at our disposal.

The terminology “spectrum” comes from David Hilbert, who made major con-
tributions to functional analysis initially motivated by a study of integral equations.
Especially important were a collection of six papers written by Hilbert in the period
1904–1910 (and published together as a book in 1912 [19]). The fourth of this se-
ries of papers marks the beginning of the modern spectral theory. Here, in a general
discussion of bilinear and quadratic forms, he generalized the concept of eigenvalue
to that of the “spectrum”2 and began the study of the relationships between the op-
erator T and its spectrum. Retrospectively, and in modern language, we can say that
he studied self-adjoint operators on �2, and an important aspect of this work was
the discovery of ways to deal with the complications that arise when the continuous
spectrum is not empty (and thus we are “outside” of the finite-dimensional case).
This led to a description of any bounded self-adjoint operator on �2 which is a gen-
eralization of what we have done for compact self-adjoint operators in Section 4.3,
and which leads to the spectral theorem as we shall discuss it in Chapter 6.

When later it was discovered that the mathematical setting of self-adjoint op-
erators on Hilbert space was a useful mathematical tool for theoretical physicists
who were developing the then new theory of quantum mechanics, the spectra of
these operators became related to the explanation of the “spectra” of atoms. Hilbert
comments on this remarkable coincidence of terminology [38]:

I developed my theory of infinitely many variables from purely mathematical interests,
and even called it “spectral analysis” without any presentiment that it would later find an
application to the actual spectrum of physics (p. 183).

Indeed, it is remarkable how the development of the theory of operators on Hilbert
spaces occurred just as it was needed for the development of quantum mechanics.
As A.M. Vershik writes in an essay on functional analysis in the twentieth century
[45]:

One might even conjecture that if the functional analysis of Hilbert spaces had not yet
existed at the time when quantum mechanics arose, it would have been created out of ne-
cessity. For that reason, it is no exaggeration to say that the extremely close connection
between the latest physics of the first half of the twentieth century and functional analysis
gave the latter even greater authority (p. 441).

2 Hilbert defined the spectrum of T as the set of λ for which I −λT is not invertible, which gives
the reciprocals of what is now the commonly used definition.
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4.6 The Fredholm Alternative

Our main goal in this section is to get information on the spectrum of a compact
operator on a Hilbert space.

Theorem 4.29. Suppose X is a Banach space and T ∈ B(X) is compact. If λ �= 0,
then T −λ I has closed range.

Proof. For λ �= 0, T −λ I = λ ( 1
λ T − I). Since 1

λ T is compact if T is, it suffices to
prove the theorem for λ = 1. Suppose, for a contradiction, that the range of T − I
is not closed. Define a map S from the quotient space X/ker (T − I) into X by
S(x + ker (T − I)) = (T − I)x. By Exercise 3.26 in Chapter 3, we know that S is
a well-defined, bounded linear map, which is one-to-one. The range of S is equal
to the range of T − I, and hence by our assumption, the range of S is not closed.
In Exercise 2.12 of Chapter 2 it was shown that a Hilbert space operator that is
bounded below must have closed range, and it is easy to see that this same result
holds in Banach spaces as well. Thus S is not bounded below, and so there must be
(quotient space) unit vectors xn +ker (T − I) in X/ker (T − I) with

‖S(xn +ker (T − I))‖ = ‖(T − I)xn‖→ 0.

By the definition of the coset norm, if ‖xn +ker (T − I)‖ = 1, then for any positive
ε there exist yn ∈ ker (T − I) such that ‖xn −yn‖ ≤ 1+ε . Since ‖xn −yn +ker (T −
I)‖= 1, there is no loss of generality in assuming, say, that ‖xn‖ ≤ 2 for all n. Com-
pactness of the operator T then guarantees that T xn has a convergent subsequence,
and hence we may assume (not relabeling this subsequence) that T xn → y for some
y in X . Since (T − I)xn → 0, we must have xn → y, and by continuity, T xn → Ty.
Thus Ty = y and y is in ker (T − I). Now we have a contradiction: Writing [xn] for
the coset xn +ker (T − I), we have ‖[xn]‖ = 1 and ‖[y]‖ = 0 but also xn → y. ��

The restriction λ �= 0 in Theorem 4.29 is crucial; see Exercise 4.26.

Theorem 4.30. Suppose that T is a compact operator on a Hilbert space H and let
Mj be the range of the operator (T − I) j for each j = 1,2, . . .. There exists a positive
integer j such that Mj = Mj+1.

Proof. By the previous theorem, M1 is closed. For j > 1, we may expand (I −T ) j

by the binomial theorem to write

(I −T ) j = I − jT +
j( j−1)

2
T 2 + · · ·+(−1) jT j,

where A≡ jT − j( j−1)/2T 2 + · · ·−(−1) jT j is compact, by Proposition 4.9. Apply
the previous theorem to I −A to conclude that Mj is closed for each j.

Clearly Mj+1 ⊆ Mj; suppose this containment is proper for each j. The quotients
Mj/Mj+1 would each then have dimension at least 1, and for each j we can choose
x j in Mj with ‖x j +Mj+1‖= 1. As in the proof of the preceding theorem, there is no
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loss of generality in assuming that ‖x j‖≤ 2 for each j. We claim that ‖T x j−T xk‖≥
1 for j �= k, contradicting the hypothesis that T is compact. To this end, suppose
j < k so that j < j +1 ≤ k < k +1. We have

• xk ∈ Mk ⊆ Mj+1,
• (T − I)x j ∈ Mj+1 by definition of Mj+1, and
• (T − I)xk ∈ Mk+1 ⊆ Mj+1.

Defining y ≡ (T − I)x j − (T − I)xk − xk, we see that y is in Mj+1, and the definition
of the coset norm guarantees that ‖x j +y‖ ≥ 1. But x j +y = T x j −T xk, and we have
verified our claim. ��

The result of Theorem 4.30 is sometimes phrased as “T − I has finite descent if
T is compact.”

The next result is the main result of this section. It says that the nonzero points
in the spectrum of a compact operator are always eigenvalues of the operator.

Theorem 4.31. Suppose T is a compact operator on a Hilbert space H and λ �= 0.
If T −λ I is not invertible, then λ is an eigenvalue of T .

Proof. Since T − λ I = λ ( 1
λ T − I), there is no loss of generality in taking λ = 1.

Thus we are given that T − I is not invertible. Suppose that 1 is not an eigenvalue of
T . This means ker (T − I) = {0}, and T − I is one-to-one. Since it is not invertible,
it must therefore fail to map onto H : (T − I)H is properly contained in H . Since
T − I is one-to-one, it follows that (T − I)2H is properly contained in (T − I)H ,
for if x0 fails to be in the range of T − I, then (T − I)x0 fails to be in the range of
(T − I)2. Continuing, we see that for each j, the range of (T − I) j+1 is properly
contained in the range of (T − I) j. This is in contradiction to the conclusion of
Theorem 4.30, and we are done. ��

The next result, called the “Fredholm alternative,” summarizes what we have
learned in this section. Notice how it captures results you know from linear algebra
about linear maps on C

n.

Theorem 4.32. Let T be a compact operator on a Hilbert space H . Suppose λ is
a nonzero complex number.

(a) If T −λ I is one-to-one, then T −λ I is invertible.
(b) If T −λ I maps H onto H , then T −λ I is invertible.

Proof. The first statement is Theorem 4.31. For the second, take adjoints. If T −λ I
is onto, then T ∗ −λ I is one-to-one (by Exercise 2.16 in Chapter 2). From the first
part of the theorem, T ∗ − λ I is invertible; the adjoint of its inverse provides the
inverse to T −λ I. ��

There is a pithy way of describing the conclusions of Fredholm alternative. Think
of “(T − λ I)x = y” as an equation with “y” given and “x” as the unknown. The
second conclusion in the Fredholm alternative says “if a solution exists for all y,
then it is unique” while the first conclusion says “if the solution is unique, it exists.”

Theorem 4.32 can be extended to the following result.
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Theorem 4.33. If T is compact in B(H ) and λ is a nonzero value, then

dim ker (T −λ I) = dim [ran (T −λ I)]⊥.

Theorem 4.32 is the case where the common value of the two numbers is zero. We
do not give the proof of Theorem 4.33 here, but refer the interested reader to Lemma
3.2.8 in [2].

Every result in this section has an exact Banach space analogue, and only minor
modifications need to be made to obtain the proofs in this more general setting. In
particular Theorems 4.30 and 4.31 go through exactly as before. For Theorem 4.32,
one need only pay attention to the fact that the adjoint is defined slightly differently
in the Banach space context, check that it is still true that ker A∗ = (ran A)⊥, where
now M⊥ denotes the bounded linear functionals which are zero at each point of M,
and recall that (T −λ I)∗ = T ∗ −λ I.

4.7 Exercises

4.1. Suppose that ‖ · ‖α and ‖ · ‖β are two equivalent norms on a vector space X .
Show that if (X ,‖ · ‖α) is complete, then so is (X ,‖ · ‖β ).

4.2. Suppose that X is an n-dimensional normed linear space over C. Show that
there is a linear bijection T : X → C

n such that T and T−1 are continuous (in your
choice of a norm for C

n); in short, every n-dimensional normed linear space over C

is isomorphic to C
n.

4.3. Suppose that X is a normed linear space, endowed with the metric topology,
and suppose X contains a nonempty open set V such that V is compact. The goal of
this problem is to show that this forces X to be finite-dimensional.

(a) Without loss of generality we may assume that 0 ∈V . Show that as x ranges over
the set V , the open sets x + 1

2V ≡ {x + 1
2 v : v ∈V} form an open cover of V . By

compactness, extract a finite subcover

{
xk +

1
2

V
}N

k=1
.

Define Y to be the span of the points x1,x2, . . . ,xN .
(b) Show that V ⊆ Y + 1

2 j V for each positive integer j, and hence

V ⊆
∞⋂

j=1

(Y +
1
2 j V ).

(c) Show that
⋂∞

1 (Y + 1
2 j V ) = Y .
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(d) From (b) and (c) and the fact that for any x ∈ X , a sufficiently small, but nonzero
multiple of x will lie in V , conclude that X = Y , and thus that X is finite-
dimensional.

4.4. Suppose that M1 is a closed subspace and M2 is a finite-dimensional subspace
in a normed linear space X .

(a) Show that M1 +M2 ≡ {m1 +m2 : m1 ∈ M1,m2 ∈ M2} is a closed subspace of X .
Hint: Argue that it is enough to consider M2 to be one-dimensional, M2 = {αx0 :
α ∈ C}. Suppose mn + αnx0 → y where mn ∈ M1,αn ∈ C. Show that {αn} is a
bounded sequence of complex numbers, and extract a convergent subsequence
αnk . Write mnk = (αnk x0 +mnk)−αnk x0.

(b) Use (a) to give an alternate proof of the statement in Proposition 4.3 that a finite-
dimensional subspace in a normed linear space is closed.

4.5. This problem provides an alternate proof to Proposition 4.4. Suppose that T :
X →Y is linear, where X and Y are normed linear spaces and X is finite-dimensional.
Define ‖ · ‖β on X by

‖x‖β = max(‖x‖X ,‖T x‖Y ).

(a) Check that ‖ · ‖β is a norm on X .
(b) Argue that T : (X ,‖ · ‖β ) → Y is continuous, and hence that so is T : X → Y in

the original norm on X .

4.6. Let X be a Banach space and suppose T1,T2,S are bounded linear operators
from X into X , with T1 and T2 compact. Show that T1 +T2, αT1, ST1, and T1S are all
compact (α any scalar). If F is a finite rank operator, show that SF and FS are finite
rank as well.

4.7. Find the error in the following “proof” that the compact operators on a Banach
space X are closed in the bounded operators on X .

Alleged proof: Suppose Tn is compact for each n and suppose further that ‖Tn −
T‖ → 0 for some bounded linear operator T . To show that T is compact, we want
to show that for an arbitrary bounded sequence {xn} in X , {T xn} has a convergent
subsequence. Fix such a sequence {xn} and let M be a bound for it: ‖xn‖ ≤ M for
all n. Now choose an ε > 0, and find K sufficiently large that

‖TK −T‖ ≤ ε
3M

.

We are given that the operator TK is compact, so we can find a subsequence {xn j}
of our sequence {xn} so that TK(xn j) converges. But a convergent sequence must be
a Cauchy sequence, so if n j and nk are sufficiently large, say if n j,nk ≥ N, then

‖TK(xn j)−TK(xnk)‖ <
ε
3
.

We claim that T (xn j) converges. Since we are in a Banach space, to verify this, it
is enough to show that {T (xn j)} is a Cauchy sequence. To this end, notice that for
n j,nk ≥ N we have
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‖T (xn j)−T (xnk)‖ ≤ ‖T (xn j)−TK(xn j)‖+‖TK(xn j)−TK(xnk)‖
+ ‖TK(xnk)−T (xnk)‖

≤ ‖T −TK‖ ·M +
ε
3

+‖TK −T‖ ·M
≤ ε.

This shows that {T (xn j)} is Cauchy, and hence it converges, as desired.

4.8. If A ∈ B(H ) is a diagonal operator with diagonal {αn}, show that if A is
compact, then limn→∞ αn = 0.

4.9. This problem builds on Exercise 2.6 in Chapter 2. Show that every finite rank
operator T in a Hilbert space H can be described as

T h =
n

∑
j=1

〈h,x j〉y j

for orthonormal vectors x1,x2, . . . ,xn and vectors y1,y2, . . . ,yn.

4.10.(a) Give an example of a compact operator which is not Hilbert–Schmidt.
(Hint: look for a diagonal operator with this property.)

(b) Show that no compact operator on an infinite-dimensional Hilbert space is in-
vertible. (Exercise 4.24 below extends this result to Banach spaces).

(c) Show that if T is compact in B(H ), where H is a Hilbert space, and λ �= 0 is
an eigenvalue of T , then ker (T −λ I) is finite-dimensional.

4.11. For λ ∈ C we abbreviate T −λ I (I the identity operator) by T −λ .

(a) Suppose that T is a normal operator in B(H ). Show that

‖(T −λ )h‖ = ‖(T −λ )∗h‖

for all h in H and all scalars λ . Hence ker(T −λ ) = ker(T −λ )∗.
(b) Show that if T is normal, then eigenvectors corresponding to distinct eigenvalues

are orthogonal.
(c) State and prove a version of Theorem 4.21 for compact normal operators.

4.12. If T ∈ B(H ) for some (complex) Hilbert space H and 〈T h,h〉 is real for all
h ∈ H , show that T is self-adjoint.

4.13. In the notation of Corollary 4.25, show that for a given h ∈ H , we can solve
the equation T f = h for f if and only if h ⊥ ker T and

∑ 1
λ 2

n
|〈h,en〉|2 < ∞.

Find all such solutions f under these assumptions.
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4.14. Consider the weighted shift operator on �2 given by

W (x1,x2,x3, . . .) = (0,x1,
1
2

x2,
1
3

x3, . . .).

Show that W is compact, but W has no eigenvalues. Find a nontrivial closed invariant
subspace for W .

4.15. Let Mx be the multiplication operator acting on L2([0,1],dx) by Mx( f ) = x f .
Note that Mx is self-adjoint. Show that it has no eigenvalues, but many reducing
subspaces.

4.16. Show that the Volterra operator V of indefinite integration on L2([0,1],dx),
defined by

V f (x) =
∫ x

0
f (t)dt,

is compact.

4.17. Show that the subspaces

Mα = { f ∈ L2[0,1] : f = 0 almost everywhere on [0,α]}

for any 0 ≤ α ≤ 1 are invariant subspaces for the Volterra operator V (defined in
Exercise 4.16).

In fact, every invariant subspace of V is of the form Mα for some α . This is a
deep result; a proof can be found in [35].

4.18. Suppose that M is a closed subspace of H so that H = M ⊕M⊥. If A is in
B(H ), we can write A as a matrix with operator entries

A =
[

X Y
Z W

]
,

where X ∈ B(M), Y ∈ B(M⊥,M), Z ∈ B(M,M⊥), and W ∈ B(M⊥). If M is an
invariant subspace for A, what does this tell you about Z? If M is reducing subspace
for A, what further information do you have about the operator entries of this matrix?

4.19. If {en} is an orthonormal sequence in a Hilbert space H , and T ∈ B(H ) is
compact, show that Ten → 0.

4.20. Show that there is no nonzero multiplication operator on L2(T,dx/(2π)) that
is Hilbert–Schmidt. Is there a multiplication operator on L2(T,dx/(2π)) that is com-
pact?

4.21. Show that if T ∈ B(H ) is compact, and M is a closed invariant subspace of
T , then the restriction of T to M is compact.

4.22. Show that a bounded linear operator T on a Hilbert space H which is self-
adjoint and satisfies T 2 = T is an orthogonal projection onto its range.
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4.23. For an analytic function ϕ mapping the unit disk into itself, define the linear
composition operator Cϕ by Cϕ( f ) = f ◦ϕ for f analytic on D.

(a) Show that if Cϕ is Hilbert–Schmidt on the Bergman space L2
a(D), then

∫
D

1
(1−|ϕ(z)|2)2 dA(z) < ∞.

(b) Show that if Cϕ is bounded on L2
a(D) and

∫
D

1
(1−|ϕ(z)|2)2 dA(z) < ∞,

then Cϕ is Hilbert–Schmidt.
(c) Give an example of a compact composition operator on L2

a(D).

4.24. Show that if X is an infinite-dimensional Banach space, then no bounded linear
operator on X can be both compact and invertible.

4.25. Show that the result of Exercise 4.10(c) also holds for a compact operator on
a Banach space.

4.26. Show that a compact operator A on a Banach space X can only have closed
range if its range is finite-dimensional.

4.27. Suppose that A is a compact operator on a Banach space X . Show that if A2 =
A, then the range of A is finite-dimensional.

4.28. Are the Hilbert–Schmidt operators a closed subspace of B(H )?

4.29. Suppose that T is a compact operator in B(H ) and λ �= 0. Show that there
exists a positive integer k so that

ker (T −λ I)k = ker (T −λ I)k+1.

This is sometimes described as “T − λ I has finite ascent,” since for any operator
A ∈ B(H ) we have ker A ⊆ ker A2 ⊆ ker A3 ⊆ ·· ·.



Chapter 5
Banach and C∗-Algebras

In 1943, a paper, written by I.M. Gelfand and M. Neumark, “On
the imbedding of normed rings into the ring of operators in
Hilbert space,” appeared (in English) in Mat. Sbornik. From the
vantage point of a fifty year history, it is safe to say that the
paper changed the face of modern analysis.
R. Kadison ([25], p. 21).

In this chapter, our Banach spaces will be equipped with some additional structure
which comes from a multiplication operation; that is, a Banach space A here will
permit the multiplication of two vectors. This multiplication will be required to
satisfy the following properties:

(1) a(bc) = (ab)c
(2) (a+b)c = ac+bc
(3) a(b+ c) = ab+ac
(4) λ (ab) = (λa)b = a(λb)

for all a,b,c in A and all scalars λ . Conspicuously absent from this list is any
requirement of commutativity for this new multiplication operation, as well as the
requirement that there be a multiplicative unit, i.e., a vector I such that aI = Ia = a
for all a in A . We will impose these additional requirements (particularly the latter)
from time to time, but at the moment neither is required. The terminology “complex
algebra” is used for a vector space over C having properties (1)–(4) above; if a unit
exists for the multiplication operation, we’ll say the algebra is “unital.”

A Banach algebra is a complex algebra A with a norm making A into a Banach
space and satisfying

‖ab‖ ≤ ‖a‖‖b‖.
Note this norm property guarantees that multiplication, as a map from A ×A into
A , is continuous: if an → a and bn → b then anbn → ab. This follows by writing
anbn − ab = (an − a)bn + a(bn − b). When A is unital, we assume ‖I‖ = 1; see
Exercise 5.2.

The final layer of structure we will impose on some of the Banach algebras to be
studied comes from the notion of an involution. An involution, on a Banach algebra
A , is a map a → a∗ of A into A satisfying

(1) (a∗)∗ = a
(2) (ab)∗ = b∗a∗

(3) (λa+b)∗ = λa∗ +b∗

B.D. MacCluer, Elementary Functional Analysis, DOI 10.1007/978-0-387-85529-5 5, 107
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for a,b ∈ A and λ a scalar. We call a∗ the adjoint of a.
Finally, a C∗-algebra is a Banach algebra with an involution such that

‖a∗a‖ = ‖a‖2.

We will call this the C∗-identity. One way to motivate the “naturalness” of this last
definition is to recall that for a bounded linear operator A on a Hilbert space H we
have already observed ‖A∗A‖ = ‖A‖2 (Proposition 2.14). It is occasionally helpful
to note that a Banach algebra with involution satisfying the inequality ‖a∗a‖ ≥ ‖a‖2

for all a ∈ A is a C∗-algebra, meaning we get the inequality in the other direction
for free. You are asked to provide the proof for this in Exercise 5.1.

5.1 First Examples

Let us look at some examples, which show that these new definitions are all quite
natural.

Example 5.1. Consider C with the usual multiplication, absolute value as norm, and
conjugation as involution: z∗ = z. The C∗-identity is the familiar statement |zz|= |z|2,
and C is a commutative C∗-algebra with unit, 1.

Example 5.2. Let X be any compact Hausdorff space, and consider the Banach
space C(X) of all continuous, complex-valued functions on X in the supremum
norm, with pointwise-defined multiplication. This is a commutative Banach alge-
bra, with the constant function 1 serving as the multiplicative unit. Defining an in-
volution on C(X) by f ∗(x) = f (x) makes C(X) into a C∗-algebra. We’ll see later
that every commutative unital C∗-algebra is “isometrically isomorphic” to C(X) for
some choice of a compact Hausdorff space X .

Example 5.3. Now let X = R and consider the Banach space C0(R) of continuous
complex-valued functions that vanish at ∞ (meaning limx→±∞ f (x) = 0, or equiva-
lently, that {x : | f (x)| ≥ ε} is compact for every ε > 0) in the supremum norm. De-
fine multiplication pointwise and involution just as in the previous example. Then
C0(R) is a commutative, but nonunital, C∗-algebra. This example can be generalized
by replacing the real line by any noncompact but locally compact Hausdorff space
X ; analogously to the last comment in the previous example, every commutative
nonunital C∗-algebra is C(X) for some locally compact Hausdorff space X .

Example 5.4. Starting with a σ -finite measure space (X ,M,µ), the Banach space
L∞(X ,µ), with multiplication and involution defined as in the last two examples, is
a commutative, unital C∗-algebra. (Strictly speaking, to define the multiplication of
two elements of L∞(X ,µ) we choose a representative of each and define its point-
wise product to be a representative of the product element.) Note it would not do to
replace “∞” by “p < ∞” in this example, as the multiplication of two Lp functions
need not be in Lp for finite p.



5.1 First Examples 109

Example 5.5. Our most important example is the Banach algebra of all bounded lin-
ear operators on a Hilbert space H , normed by the operator norm ‖A‖= sup{‖Ah‖ :
‖h‖= 1}, and with multiplication defined by composition (AB)(h) = A(B(h)). This
is a noncommutative (when the dimension of H is at least two) Banach algebra
with identity I. Defining A∗ to be the usual operator adjoint provides an involution
on B(H ) under which we have a C∗-algebra, as noted in Chapter 2. In the special
case that H = C

n, then B(H ) is identified with the n× n matrices, and we will
often denote this by Mn. When H is replaced by a Banach space X , B(X) is a
Banach algebra.

Even though many of the classical Banach spaces are in fact Banach algebras un-
der a natural multiplication, the conscious exploitation of this fact was rather long
in coming. Riesz, writing in 1913, looked explicitly at the product of operators on a
Hilbert space, and was at least implicitly aware of the inequality ‖AB‖ ≤ ‖A‖‖B‖.
By 1930, the concept of “rings of operators” came under explicit study, and begin-
ning in 1936 an important series of papers by Francis Murray and John von Neu-
mann, titled “On Rings of Operators,” developed the theory of what are now called
von Neumann algebras. These are certain kinds of C∗-subalgebras of B(H ), and a
particular motivation for their study was to provide the “right” mathematical frame-
work for the study of “observables” in quantum mechanics.

Von Neumann was a brilliant and prolific mathematician who made fundamental
contributions to many areas of both pure and applied mathematics. He (along with
Albert Einstein and Kurt Gödel) was part of the first faculty at the Institute for
Advanced Study in Princeton. Peter Lax, in the forward to a recently published
collection of letters written by von Neumann, says

...had he lived a normal span of years1, he would certainly have been a recipient of a Nobel
Prize in economics. And if there were Nobel Prizes in computer science and mathematics,
he would have been honored by these, too. So the writer of these letters should be thought of
as a triple Nobel laureate, or possibly, a 3 1

2 -fold winner, for his work in physics, in particular
quantum mechanics ([37], p. xiii).

His work with Murray is among his most influential, at least on the pure mathe-
matics side. Curiously, this work predates much of the foundational work on Ba-
nach algebras that we will look at in the next sections (much of which is due to I.
Gelfand).

Von Neumann showed a prodigious talent as a young child for calculation and
solving problems. According to a biographical article on von Neumann written by
Halmos [16],

At the age of 6 he could divide two eight digit numbers in his head; by 8 he had mastered
the calculus; by 12 he had read and understood Borel’s Théorie des Fonctions (p. 383).

Stories about his astonishing calculational abilities recur throughout his life. His
biographer, N. Macrae, tells the following anecdote [30]:

1 Von Neumann died in 1957, at the age of 53, of cancer.
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When calculating a problem while sitting, he was apt to stare at the ceiling muttering, with
an almost frighteningly blank face. He did this when the Rand Corporation asked whether
his computers could be modified to tackle a particular problem, which—as Rand staff ex-
plained to him for two hours on blackboards and with graphs—would understandably be
beyond computers in their present state. For two or three minutes, Johnny “stared so blankly
that a Rand scientist later said he looked as if his mind had slipped his face out of gear. Then
he said ‘Gentlemen, you do not need the computer, I have the answer”’(p. 9).

Any norm-closed subalgebra of a C∗-algebra which is also closed under adjoints
is again a C∗-algebra. An important example is the subalgebra of compact operators
K (H ) in B(H ) (Theorem 4.10 and Proposition 4.12 are relevant here); it is non-
commutative and has no unit when the dimension of H is infinite.

The term B∗-algebra also appears in the literature, for what we call a C∗-algebra.
At one point in time, the terminology C∗-algebra was reserved for a closed subalge-
bra of B(H ) which was also closed under the ∗ operation. The Gelfand–Naimark
theorem established the fact that every B∗-algebra was “isometrically ∗- isomorphic”
to a closed ∗-subalgebra of B(H ) for some choice of a Hilbert space H , and the
need for separate terminology disappeared, with “C∗-algebra” winning out.

Since B(H ) is our most important example of a C∗-algebra, and in view of the
Gelfand–Naimark theorem just discussed, we will henceforth use uppercase letters
A,B,C, . . . to denote elements of a generic Banach or C∗-algebra, and write I for the
multiplicative unit, if there is one. We will also carry over some familiar terminology
from the B(H ) setting and call an element A of a C∗-algebra self-adjoint if A = A∗

and normal if AA∗ = A∗A. Thus, for example, the self-adjoint elements of C(X) as
in Example 5.2 above are the real-valued functions in C(X).

5.2 Results on Spectra

For a bit, we don’t need the C∗-structure, so in this section we work in Banach
algebras. Since we’ll be concerned with invertibility, we will assume our Banach al-
gebras to be unital. As noted above, the bounded linear operators B(X), where X is
a Banach space, form a Banach algebra, under the usual multiplication of operators
(that is, composition).

Definition 5.6. Suppose A is a Banach algebra with unit I. We say that A ∈ A is
invertible if there exists B in A with AB = BA = I.

We could talk separately about “left” and “right” inverses for an element in a
Banach algebra. It is easy (and useful!) to note that if A has both a right inverse B
and left inverse C, then B = C, since C = CI = C(AB) = (CA)B = IB = B. Thus
when convenient, we can show that an element is invertible by separately exhibiting
a left and right inverse.

For n×n matrices, the existence of either a right or left inverse guarantees invert-
ibility of the matrix. The analogous statement does not hold more generally, though.
For example, the forward shift S on �2 has left inverse S∗ but is not invertible.
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In the next result, the topology in use in A is of course the metric topology which
comes from the norm.

Theorem 5.7. Suppose A is a unital Banach algebra and let G denote the invertible
elements of A . Then G is an open set in A .

To prove this theorem, we begin with a lemma which says that the open ball of
radius 1 about the identity is contained in G .

Lemma 5.8. If B ∈ A and ‖I−B‖ < 1, then B is invertible, and its inverse is given
by ∑∞

k=0(I −B)k.

Notice that the formula for B−1 follows formally from a geometric series type
manipulation: B−1 = [I− (I−B)]−1 = ∑∞

k=0(I−B)k, where we interpret (I−B)0 to
be I.

Proof (Lemma 5.8). Let C = I−B so that ‖C‖= r < 1 and ‖Cn‖≤ ‖C‖n = rn. Since
r < 1 we have ∑∞

0 ‖Cn‖ < ∞. This says the partial sums of ∑∞
0 Cn form a Cauchy

sequence, and hence by completeness they converge in A . Denote ∑n
k=0 Ck by Zn

and ∑∞
k=0 Ck by Z. Since Zn = I +C+C2 + · · ·Cn, we have Zn(I−C) = I−Cn+1 → I.

On the other hand, Zn(I −C) → Z(I −C), so we must have Z(I −C) = I. Similarly,
(I −C)Z = I, and I −C is invertible, with inverse Z. Since I −C = I − (I −B) = B
we are done. ��

With the lemma in hand, we can make short work of the proof of Theorem 5.7.

Proof (Theorem 5.7). Suppose A0 ∈ G with inverse B0. We claim that for all A
satisfying ‖A−A0‖ < ‖B0‖−1, A is invertible. To see this, note that ‖A−A0‖ <
‖B0‖−1 implies that ‖B0A−B0A0‖< 1; that is, ‖I−B0A‖< 1. Invoking Lemma 5.8,
we find that B0A is invertible, say (B0A)−1 =C. Since I =C(B0A) = (CB0)A, we see
that A is left invertible. Similarly, ‖A−A0‖ < ‖B0‖−1 implies 1 > ‖AB0 −A0B0‖ =
‖AB0 − I‖ and AB0 is invertible, with inverse, say, D. Thus A has right inverse B0D.
As we have already observed, the existence of a left inverse and a right inverse for
A shows that A ∈ G , and the proof is complete. ��

The map from G to G sending A to A−1 is continuous; see Exercise 5.3.
We have looked at the notion of the spectrum of an operator in Section 4.4; it is

straightforward to formulate the definition more generally, for an element of a unital
Banach algebra.

Definition 5.9. Let A ∈A , where A is a unital Banach algebra. The spectrum of A,
denoted σ(A), is {λ ∈ C : A−λ I is not invertible in A }.

We often write A−λ for A−λ I. Of course, when A is B(X) for some Banach
space X , the above definition is precisely our earlier notion of the spectrum of a
bounded linear operator. As another example, suppose that A is the Banach algebra
is C(X) for some compact Hausdorff space X . The spectrum of f in C(X) is the
set of complex numbers λ for which f (x)−λ = 0 for some x ∈ X , that is to say,
σ( f ) = f (X), the range of f .
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The next result collects some of the basic properties of the spectrum of an element
in a unital Banach algebra, the deepest of which is the statement that the spectrum is
always nonempty. A moment’s reflection on the linear algebra roots of this statement
puts this in some perspective. When A is an n×n complex matrix (i.e., an element
of the Banach algebra Mn), the spectrum of A is exactly the set of eigenvalues of A.
The statement that the spectrum is nonempty becomes, in this setting, the statement
that every n× n matrix has a (complex) eigenvalue, a nontrivial fact whose usual
proof makes use of the fundamental theorem of algebra.

Theorem 5.10. Suppose A is a unital Banach algebra and let A∈A . The spectrum
of A is a nonempty, compact subset of C, which is contained in the closed disk
{λ : |λ | ≤ ‖A‖}. Moreover, the map which sends z to (z−A)−1 is an A -valued
strongly analytic function on the open set C\σ(A).

The last part of the statement of the theorem requires some explanation. How do
we define analyticity for vector-valued functions? For an open set Ω in the complex
plane and a Banach space A define the derivative of the vector-valued function
f : Ω → A at z0 ∈ Ω to be

f ′(z0) = lim
h→0

f (z0 +h)− f (z0)
h

if it exists in A . The quotients ( f (z0 +h)− f (z0))/h are vectors in A , and the limit
is taken in the norm topology of A , as h tends to 0 in C. We say f is strongly analytic
in Ω if f ′ exists and is continuous in Ω . Another natural way to contemplate defining
analyticity for a Banach space-valued function is as follows: Say that f : Ω → A
is weakly analytic if ϕ ◦ f is analytic in the ordinary sense for every bounded linear
functional ϕ ∈ A ∗. It is easy to show that a Banach space-valued strongly analytic
function is weakly analytic (Exercise 5.4); remarkably the converse is also true, so
that these two definitions of analyticity actually coincide. Since we won’t need this
latter fact, we omit the proof here.

To prove Theorem 5.10 will need a “Liouville-type theorem” for vector-valued
analytic functions, which we turn to next.

Theorem 5.11. If f : C → A is weakly analytic, where A is a Banach space, and
bounded in C, then f is constant.

Proof. We are given that ‖ f (z)‖ ≤ M < ∞ for all z ∈ C. If ϕ is arbitrary in A ∗, then
ϕ ◦ f is entire and

|ϕ( f (z))| ≤ ‖ϕ‖‖ f (z)‖ ≤ ‖ϕ‖M

for all z ∈ C. Thus for every bounded linear functional ϕ on A , ϕ ◦ f is a bounded
entire function in the complex plane, and hence constant.

We claim this implies that f is constant. Suppose not, and find z1,z2 with f (z1) �=
f (z2). By Corollary 3.4 to the Hahn–Banach theorem, A ∗ separates the points of A
and we may find ϕ ∈ A ∗ with ϕ( f (z1)) �= ϕ( f (z2)), a contradiction. This verifies
the claim and completes the proof. ��
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We’re now ready to prove Theorem 5.10.

Proof (Theorem 5.10). Let |λ | > ‖A‖ and write A−λ = λ ( A
λ − I). By Lemma 5.8

we can see that I −A/λ , and hence A−λ , is invertible. Thus the spectrum of A is
contained in the closed disk {λ : |λ | ≤ ‖A‖}.

Next we show that σ(A) is closed by showing its complement is open. If A−λ
is invertible, we want to show that for some ε > 0, A− µ is invertible provided
|λ − µ | < ε . Since the set G of invertible elements of A is open, we can find an
ε > 0 so that if ‖B− (A− λ )‖ < ε , then B is invertible. For this ε , |λ − µ | < ε
implies A−µ is invertible. This shows that the complement of σ(A) is open. Being
closed and bounded in C, σ(A) is compact.

Define F : C\σ(A) → A by F(λ ) = (λ −A)−1. We claim that F is (strongly)
analytic in C\σ(A). For h in C sufficiently small so that λ +h stays in the open set
C\σ(A) we have

(λ +h−A)−1 − (λ −A)−1 = (λ +h−A)−1[(λ −A)− (λ +h−A)](λ −A)−1

so that
F(λ +h)−F(λ )

h
= −(λ +h−A)−1(λ −A)−1.

Continuity of the inverse (Exercise 5.3) shows that

lim
h→0

F(λ +h)−F(λ )
h

= −[(λ −A)−1]2

verifying the analyticity of F .
Finally we turn to the assertion that the spectrum of A is nonempty. If it were

empty, then the A -valued function F as just defined is analytic in all of C. Moreover,
for |λ | > ‖A‖,F(λ ) = (λ −A)−1 = λ−1(I −A/λ )−1, which tends to 0 as |λ | → ∞.
Thus if σ(A) = /0, then F is a bounded, entire A -valued function, and hence constant
by Theorem 5.11, which is clearly a contradiction. ��

The next result, called the Gelfand–Mazur theorem, is due independently to
Gelfand (1941) and Mazur (1938). It uses Theorem 5.10 to show that the only uni-
tal Banach algebra which is also a division algebra is C. An isomorphism between
Banach algebras is a bijective linear map which is also multiplicative; it is isometric
if it also preserves norms.

Theorem 5.12. If A is a unital Banach algebra in which each nonzero element is
invertible, then A is isometrically isomorphic to C.

Proof. Let A ∈ A and suppose λ1,λ2 are two distinct complex numbers. At least
one of A−λ1,A−λ2 is invertible (since both can’t be 0). On the other hand, σ(A)
is nonempty, so σ(A) consists of exactly one complex number for each A ∈ A ;
call it λ (A). Now A− λ (A)I = 0 or A = λ (A)I. The mapping sending A to λ (A)
is an isometric isomorphism of A onto C; verification of the routine details of this
statement is left to the reader. ��
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For a polynomial p(z) = cnzn + · · ·+c1z+c0 and an element A of a unital Banach
algebra, we write p(A) for cnAn + · · ·+c1A+c0I and p(σ(A)) for the set{p(λ ) : λ ∈
σ(A)}.

Lemma 5.13. The product Π n
1 (A−λ jI) is invertible if and only if each of the factors

A−λ jI is invertible.

Proof. The “if” direction of the lemma is obvious. Now suppose Π n
1 (A− λ jI) is

invertible, with inverse S. Fix a j, with 1 ≤ j ≤ n, and set

P = Πm�= j(A−λmI).

Since A−λmI and A−λkI commute for every m and k, we have SP(A−λ jI) = I.
This shows that A−λ j has a left inverse. Similarly, (A−λ jI)PS = I and A−λ jI has
a right inverse. As we have observed, this guarantees that A−λ jI is invertible. ��

A spectral mapping theorem is a statement of the form σ(p(A)) = p(σ(A)) for
p in some class of functions and A an element of a unital Banach algebra. Our first
spectral mapping theorem uses the class of polynomial functions.

Theorem 5.14. Suppose A is a unital Banach algebra, A is an element of A , and
p is a polynomial. We have

σ(p(A)) = p(σ(A)).

Proof. The result is easy when p is a constant, so we assume p has degree at least
one. We’ll show the two inclusions: p(σ(A)) ⊆ σ(p(A)) and the reverse. For the
first, let λ ∈ σ(A) and factor p(z)− p(λ ) as

c(z−λ )(z−λ2) · · ·(z−λn),

where c �= 0 and the λ j are complex numbers; note that we have used the fact that λ
is a root of p(z)− p(λ ). Defining λ1 = λ , we then write

p(A)− p(λ )I = c(A−λ1I)(A−λ2I) · · ·(A−λnI).

The fact that A− λ jI and A− λkI commute is being used here. By Lemma 5.13,
invertibility of the product Π n

1 (A−λ jI) is equivalent to invertibility of each factor;
since λ1 = λ ∈ σ(A), this says that p(A)− p(λ )I is not invertible and hence p(λ )
is in σ(p(A)).

To see that σ(p(A))⊆ p(σ(A)), let µ ∈ σ(p(A)). Factor the polynomial p(z)−µ
as c(z−β1) · · ·(z−βn) so that p(A)−µI = c(A−β1I) · · ·(A−βnI). Now Lemma 5.13
says that some A−β jI is not invertible, so for some j, β j ∈ σ(A). But p(β j)−µ = 0,
so we have realized µ as p(β j) where β j ∈ σ(A), and the proof is complete. ��

As a simple example to illustrate this spectral mapping theorem, suppose that A
is an element of a unital Banach algebra that satisfies A2 = A. This will imply that
σ(A)⊆ {0,1}. To see that this follows directly from Theorem 5.14, let p(z) = z2−z
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so that p(A) = 0, and hence σ(p(A)) = {0}. We must then have p(λ ) = 0 for all
λ ∈ σ(A), and thus σ(A) ⊆ {0,1}.

When A is a bounded operator on a Hilbert space H there are extensions of
Lemma 5.13 which allow us to prove spectral mapping theorems for various “parts”
of the spectrum of A. Recall that by Theorem 2.25, a bounded linear operator on a
Hilbert space is invertible if and only if it is bounded below and has dense range.
Thus a complex number λ is in the spectrum of A ∈ B(H ) if and only if A−λ I is
not bounded below and/or A−λ I does not have dense range. This tells us that σ(A)
is composed of two possibly overlapping sets, pictured below:

σap(A) ≡ {λ : A−λ I is not bounded below}

(called the approximate point spectrum of A) and

Γ (A) ≡ {λ : A−λ I does not have dense range}

(called the compression spectrum of A). The approximate point spectrum consists
of two disjoint pieces, the eigenvalues of A (denoted σp(A)) and the complement
of σp(A) in σap(A). This decomposition is schematically represented below. For
further discussion of these parts of the spectrum of A, see Exercises 5.5 and 5.8.

σap(A)

σp(A)

Γ (A)

FIGURE 5.1: Parts of the spectrum

Exercise 5.7 outlines an argument to show that for every polynomial p,

p(σap(A)) = σap(p(A));

this is a “spectral mapping theorem” for the approximate point spectrum. Exer-
cise 5.9 outlines a proof of an “inversion spectral mapping theorem,” which says
that for an invertible operator A ∈ B(H ),

σ(A−1) = [σ(A)]−1 ≡
{

1
λ

: λ ∈ σ(A)
}

.

We know that the spectrum of any element A in a unital Banach algebra is com-
pact, nonempty, and contained in the closed disk with radius ‖A‖ centered at the
origin. We define the spectral radius of A to be
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r(A) ≡ max{|λ | : λ ∈ σ(A)}.

Note that r(A) = 0 is equivalent to σ(A) = {0}, but that r(A) = 0 does not neces-
sarily imply A = 0; it is easy to find a counterexample in M2.

There is a remarkable formula, due to Gelfand, for r(A). This formula relates the
algebraic property inherent in its definition (invertibility) to ‖An‖, a metric property.

Theorem 5.15 (Spectral Radius Formula). For A ∈ A , a unital Banach algebra,
r(A) = limn→∞ ‖An‖1/n.

The existence of the limit is part of the proof. We will take a look at some exam-
ples and applications before proceeding to the proof.

Example 5.16. Suppose our Banach algebra is C(X) for some compact Hausdorff
space X . We know σ( f ) = range f = f (X), so r( f ) = ‖ f‖∞. Thus the spectral radius
formula clearly holds in this setting, since ‖ f n‖∞ = (‖ f‖∞)n and ‖ f n‖1/n

∞ = ‖ f‖∞
for all n.

Example 5.17. If A is a self-adjoint element of a unital C∗-algebra, then we have

‖A2‖ = ‖A∗A‖ = ‖A‖2

and ‖A2‖ = ‖A‖2. Since A2 is also self-adjoint, we may replace A by A2 to get

‖A4‖ = ‖A2‖2 = ‖A‖4.

Continuing, an induction argument will show

‖A2n‖ = ‖A‖2n
,

and the spectral radius formula gives the conclusion that r(A) = ‖A‖ for any self-
adjoint A. Much later we will see that the same conclusion is true more generally
for normal elements.

Suppose that A is a unital Banach algebra, and that B is closed subalgebra of
A containing the unit I. Let B be an element of B. It is certainly possible for the
spectrum of B, relative to B, to be different from the spectrum relative to A . (This
issue is explored further in Exercise 5.17) However, by the spectral radius formula,
the spectral radius must be the same whether we think of B as an element of A or B,
since ‖Bn‖ has nothing to do with which of the two algebras are being considered.
In Section 5.6, we will see that if A is a C∗-algebra with unit I, and B is a C∗-
subalgebra of A containing I, then σA (B) = σB(B) for any B ∈ B; this is referred
to as “spectral permanence” in C∗-algebras.

We are ready to give the proof of the spectral radius formula.

Proof (Theorem 5.15). We begin with some observations that will clarify what we
need to do. If λ is in σ(A), then by the spectral mapping theorem (Theorem 5.14)
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λ n ∈ σ(An) for any positive integer n. This tells us that |λ n| ≤ ‖An‖ and thus we
have |λ | ≤ ‖An‖1/n for all nonnegative integers n. It follows that

r(A) ≤ inf
n
‖An‖1/n ≤ liminf

n→∞
‖An‖1/n.

Thus if we can show limsupn→∞ ‖An‖1/n ≤ r(A) we will have

limsup
n→∞

‖An‖1/n ≤ r(A) ≤ liminf
n→∞

‖An‖1/n,

forcing equality throughout and giving the desired result.
To this end, let ∆ be the open disk in C centered at 0 and having radius 1/r(A)

(which we interpret as ∞ if r(A) = 0). We make a few observations to get started:

• The map z → (z − A)−1 is (strongly) analytic in C\σ(A), and has limit 0 as
|z| → ∞, by Theorem 5.10 and its proof.

• If λ is in ∆\{0} then 1/λ is in C\σ(A), since |1/λ | > r(A).
• The map λ → (I − λA)−1 is strongly analytic in ∆\{0} and continuous at 0,

since (I −λA)−1 = [λ ( 1
λ I −A)]−1.

Thus for each bounded linear functional ϕ in A ∗, the C-valued function

f (λ ) ≡ ϕ[(I −λA)−1]

is analytic in ∆\{0} and continuous at 0, hence analytic in ∆ . It must therefore have
a power series representation in ∆ , which we determine next. If

|λ | < 1
‖A‖ ≤ 1

r(A)
,

we have ‖λA‖ < 1 and therefore ‖I − (I −λA)‖ < 1. By Lemma 5.8,

(I −λA)−1 =
∞

∑
n=0

λ nAn.

Thus the Taylor series for f (λ ) = ϕ[(I −λA)−1] about 0 is

f (λ ) =
∞

∑
n=0

ϕ(An)λ n,

and this is valid in all of ∆ . In particular, it must be the case that λ nϕ(An) → 0 as
n → ∞, for each λ ∈ ∆ , and thus {λ nϕ(An)} is a bounded sequence of complex
numbers, for each fixed λ ∈ ∆ and ϕ ∈ A ∗.

Consider the following family S of bounded linear functionals on A ∗:

S = {Tn ∈ B(A ∗,C) : Tn(ϕ) = λ nϕ(An)},
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where λ ∈ ∆ is fixed. This is the set of elements of A ∗∗ which we previously de-
noted (λ nAn)∗∗; we know these to be bounded with norm

‖Tn‖ = ‖(λ nAn)∗∗‖ = ‖λ nAn‖;

see the discussion following Corollary 3.5. Now for each fixed ϕ ∈A ∗, the fact that
{λ nϕ(An)}∞

n=1 is a bounded sequence tells us that

sup
n
{|Tn(ϕ)|} = sup

n
{|λ nϕ(An)|} < ∞,

or in other words, the sequence of bounded linear functionals Tn is pointwise
bounded. By the uniform boundedness principle, supn ‖Tn‖ < ∞ and we have

sup
n
‖λ nAn‖ ≡ M(λ ) < ∞,

where M(λ ) denotes a finite constant, which may depend on λ ∈ ∆ . Thus for every
n,

‖An‖1/n ≤ M(λ )1/n

|λ | .

Since M(λ )1/n → 1 as n → ∞,

limsup
n→∞

‖An‖1/n ≤ 1
|λ | .

This holds for each λ ∈ ∆ , which has radius 1/r(A), and we conclude

limsup
n→∞

‖An‖1/n ≤ r(A).

As we previously observed, this is sufficient to complete the proof. ��

As an easy application of the spectral radius formula, note that if A and B are
commuting elements in a unital Banach algebra, then Theorem 5.15 quickly shows
that r(AB) ≤ r(A)r(B); this property is called submultiplicativity. It is also true that
the spectral radius is subadditive, meaning r(A + B) ≤ r(A)+ r(B) for commuting
elements A and B. While this can be proved from Theorem 5.15, we will see an
easier proof later (see Exercise 5.34).

For an operator T on a Hilbert space H , we have discussed the decomposition
of σ(T ) into the (possibly overlapping) subsets σap(T ) and Γ (T ), the approximate
point spectrum and compression spectrum, respectively. Recall from Section 4.5 we
had a different perspective on “parts” of σ(T ). There we considered that the simplest
way for λ to be in σ(T ) is if T −λ I is not one-to-one; i.e., λ is an eigenvalue of T .
The collection of the eigenvalues of T is called the point spectrum of T (for reasons
that will become clearer in Chapter 6); recall we denote it σp(T ). If λ is in σ(T )
but is not an eigenvalue, then the range of T −λ I is a proper subset of H , and this
can happen in two different ways: Either the range of T −λ I is a proper, but dense,
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subset of H , or the closure of the range of T − λ I is a proper closed subspace
of H . This leads to a classification of σ(T )\σp(T ) into two disjoint pieces: the
continuous spectrum, where the range of T −λ I is dense in, but not equal to, H ,
and the residual spectrum, where the closure of the range of T − λ I is a proper
subspace of H . So now we have decomposed σ(T ) into three disjoint pieces:

point spec. ≡ {λ : T −λ is not one-to-one}
continuous spec. ≡ {λ : T −λ is one-to-one, (T −λ )H �= H ,(T −λ )H = H }

residual spec. ≡ {λ : T −λ is one-to-one and (T −λ )H �= H }.

In Figure 5.2 we redraw Figure 5.1, showing these three disjoint pieces. The point
spectrum, σp(T ), is shown dotted. The continuous spectrum is σap(T )\(Γ (T )∪
σp(T )) (shown dashed), and the residual spectrum is Γ (T )\σp(T ). Certain classes
of operators cannot have any residual spectrum; for example self-adjoint operators
(see Exercise 5.25), or more generally, normal operators.

FIGURE 5.2: Disjoint parts of the spectrum

Example 5.18. Consider a (bounded) diagonal operator T on �2 with diagonal
(α1,α2, . . .). Clearly each scalar α j is an eigenvalue of T . We leave it to the reader to
check that the closure of the set {α j} is σ(T ). Suppose that λ ∈ σ(T )\σp(T ). The
range of the operator T −λ I is the range of the diagonal operator S with diagonal
(α1 −λ ,α2 −λ , . . .). We claim that the range of S is dense in �2. To see this, note
that given any point x = (x1,x2, . . .) in �2 and any positive integer N, the sequence{

x1

α1 −λ
,

x2

α2 −λ
, · · · , xN

αN −λ
,0,0, · · ·

}

is in �2 and is mapped by S to

(x1,x2, . . . ,xN ,0,0, . . .).

by choosing N sufficiently large, this is as close to x as desired. We have shown that
every point of σ(T )\σp(T ) is in the continuous spectrum, and the residual spectrum
is empty.
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The terms “point spectrum,” “continuous spectrum,” and “residual spectrum,”
have the same definitions for operators on a Banach space. The diagonal operator
considered above, acting on the Banach space �∞, has all points σ(T )\σp(T ) in the
residual spectrum. The reader is asked to verify this in Exercise 5.10.

5.3 Ideals and Homomorphisms

In this section we continue to be primarily interested in the unital Banach algebra
setting.

Definition 5.19. A complex homomorphism on a Banach algebra A is a linear map
ϕ : A → C that preserves multiplication: ϕ(AB) = ϕ(A)ϕ(B).

As an easy example, note that point evaluation at any x ∈ X is a complex homo-
morphism on A = C(X) for X compact and Hausdorff.

We don’t a priori require that a complex homomorphism be continuous, but we
will see shortly that it automatically is, and moreover if we exclude the case that
ϕ is identically 0, then we must have ‖ϕ‖ = 1. This nontriviality assumption also
forces ϕ(I) = 1, since ϕ(I) = ϕ(I · I) = ϕ(I)ϕ(I) so that either ϕ(I) = 1 or ϕ(I) =
0; in the latter case ϕ ≡ 0. If A is invertible in A and ϕ is a nontrivial complex
homomorphism, then ϕ(A−1) = 1/ϕ(A); in particular ϕ(A) �= 0 if A is invertible.

Theorem 5.20. Every nontrivial complex homomorphism ϕ of a unital Banach al-
gebra is continuous and satisfies ‖ϕ‖ = 1.

Proof. If A ∈ A with ϕ(A) �= 0, then

ϕ
(

I − A
ϕ(A)

)
= 0.

As we have just observed, this shows that I −A/ϕ(A) is not invertible, and so by
Lemma 5.8 we must have ‖A/ϕ(A)‖ ≥ 1, or equivalently ‖A‖ ≥ |ϕ(A)|. Since
‖A‖ ≥ |ϕ(A)| clearly also holds when ϕ(A) = 0, we see that ϕ is bounded with
‖ϕ‖ ≤ 1. Consideration of the identity I gives ‖ϕ‖ = 1. ��

A complex homomorphism is a linear and multiplicative map of a Banach algebra
into the Banach algebra C. More generally we could consider a homomorphism of a
Banach algebra A into another Banach algebra B; this is just a linear map that also
preserves multiplication. Our primary interest will be in the case that A and B are
C∗-algebras and in this case we will want the homomorphism to be star-preserving
as well. Thus we define a ∗-homomorphism between C∗-algebras to be a linear,
multiplicative map ρ for which ρ(A∗) = ρ(A)∗ for all A in the domain C∗-algebra.
If ρ is bijective from A onto B, then ρ is a ∗-isomorphism and it will preserve
the C∗-structure; that is, A and B are “the same” as C∗-algebras when they are ∗-
isomorphic. The next result says that every complex homomorphism of a C∗-algebra
is automatically a ∗-homomorphism.



5.3 Ideals and Homomorphisms 121

Theorem 5.21. Suppose A is a unital C∗-algebra and ϕ : A → C is a homomor-
phism. For every A ∈ A , ϕ(A∗) = ϕ(A).

A consequence of the theorem is that ϕ(A) is real when A is self-adjoint. This
observation motivates the proof, which focuses first on self-adjoint elements.

Proof. First suppose that A is a self-adjoint element of the C∗-algebra A and let t
be a real number. Set B = A + itI so that B∗ = A− itI and B∗B = A2 + t2I. Since ϕ
has norm 1, we have

|ϕ(B)|2 ≤ ‖B‖2 = ‖B∗B‖ = ‖A2 + t2I‖ ≤ ‖A||2 + t2,

where we have used the C∗-identity. Setting ϕ(A) = x + iy for x and y real, and
recalling that ϕ(I) = 1, the above computation says ‖A‖2 ≥ x2 + y2 +2yt for every
real number t. Since the left-hand side is fixed, but t is arbitrary in R, this forces
y = 0, and we conclude that ϕ(A) is real when A is self-adjoint.

The general result now follows from a standard procedure. Write an arbitrary A ∈
A as A = X + iY where X and Y are self-adjoint elements of A (see Exercise 5.2).
Thus ϕ(A) = ϕ(X)− iϕ(Y ), since we know that ϕ(X) and ϕ(Y ) are real by the first
part of the argument. Since ϕ(A∗) = ϕ(X∗)− iϕ(Y ∗) = ϕ(X)− iϕ(Y ), we are done.

��

Homomorphisms of Banach algebras are closely connected to the notion of ideals
in an algebra; we define this next.

Definition 5.22. A (two-sided) ideal J in a Banach algebra A is a subspace of A
with the property that A ∈ A and S ∈ J implies AS ∈ J and SA ∈ J .

At the moment we don’t require that the subspace be (topologically) closed in
A . Of course, one could also talk about “left ideal” or “right ideals” in A , by only
requiring that multiplication on the left or right by arbitrary elements of A keeps
you in J . Unless we say explicitly otherwise, “ideal” will always mean two-sided
ideal. If J is an ideal which is not all of A , we will call it a proper ideal, and if
there is no proper ideal J ′ with J ⊆ J ′ but J �= J ′ we say J is a maximal
ideal. An easy, but important, observation is that no proper ideal in a unital Banach
algebra can contain an invertible element (else it contains I, and hence everything).

For example, in the Banach algebra C[0,1] in the supremum norm, for each
closed set E ⊆ [0,1],

JE ≡ { f ∈C[0,1] : f (x) = 0 for x ∈ E}

is an ideal (which is moreover a closed ideal). In the next section we will see that
when E is a singleton in [0,1], the corresponding ideal is maximal.

The next few results collect some simple facts about ideals.

Proposition 5.23. In a unital Banach algebra, the closure of a proper left, right, or
two-sided ideal is a proper left, right, or two-sided ideal, respectively.
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Proof. We give the proof for the case of a two-sided ideal and leave the other cases
for the reader. Suppose J is a two-sided proper ideal in A and let G be the set of
invertible elements of A . We know (Theorem 5.7) that G is open and nonempty;
furthermore J ⊂ A \G , a closed set. In particular, J ⊂ A \G . It is easy to check
that J is an ideal, and thus J is an ideal not equal to A , i.e., a proper ideal. ��

Proposition 5.23 is not true in the nonunital setting. For example, the non-unital
Banach algebra C0(R) contains a proper dense ideal Cc(R) of continuous functions
with compact support; this is the statement from real analysis that the continuous
functions with compact support on the real line are uniformly dense in the continu-
ous functions which vanish at infinity.

Proposition 5.24. In a unital Banach algebra, every maximal ideal is closed and
every proper ideal is contained in a maximal ideal.

Proof. The first statement follows from the previous result: if J is a nonclosed
ideal, then J is a proper ideal strictly containing J , and hence J cannot be
maximal. For the second statement, we look at the collection P of all proper ideals
containing a given proper ideal J , and partial order P by inclusion. A totally
ordered chain in P has an upper bound (the union of all elements in the chain,
which contains J but does not contain the identity I), so by Zorn’s lemma there is
a maximal element in P . This is a maximal ideal containing J . ��

We now look at the basic construct of forming a quotient by a proper, closed
ideal J in a Banach algebra A . Define, as for Banach spaces, the quotient space
A /J = {A +J : A ∈ A }. Since J is closed, we know from Exercise 3.25 in
Chapter 3 that A /J is a Banach space under the norm

‖A+J ‖ = inf{‖A+B‖ : B ∈ J } = inf{‖A−B‖ : B ∈ J }.

To put a multiplicative structure on A /J , define (A +J )(B +J ) = AB +J .
One needs to check that this multiplication is well-defined (see Exercise 5.13); here
the fact that J is an ideal, and not merely a subspace, is important. We’d like
to know that with these definitions, A /J becomes a Banach algebra; this is the
content of the next result.

Theorem 5.25. For a Banach algebra A with proper closed ideal J , the quotient
A /J is a Banach algebra. When A is unital, so is A /J . The quotient map
Π : A → A /J is a surjective homomorphism with kernel J .

Proof. We already know that A /J is a Banach space. It is easy to check that the
multiplication has the desired associative and distributive properties. We need to
verify that

‖(A+J )(B+J )‖ ≤ ‖A+J ‖‖B+J ‖. (5.1)

For any J1,J2 ∈ J we have

(A+ J1)(B+ J2) = AB+ J1B+AJ2 + J1J2,
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where J1B+AJ2 +J1J2 is in J . Thus the left hand side of Equation (5.1), which is
‖AB+J ‖, is less than or equal to

‖AB+ J1B+AJ2 + J1J2‖ = ‖(A+ J1)(B+ J2)‖ ≤ ‖A+ J1‖‖B+ J2‖,

for any choice of J1,J2 in J . If we take the infimum over all J1,J2 in J , we see
that (5.1) holds.

If A has unit I, then A /J has unit I + J . Note that ‖I + J ‖ = 1. Indeed,
since 0 is in J , ‖I +J ‖ ≤ 1, and there cannot exist K ∈ J with ‖I −K‖ < 1,
otherwise K would be invertible and J would not be proper.

As regards the quotient map Π : A → A /J , we know that Π is a bounded
linear map with ‖Π(A)‖ ≤ ‖A‖ for all A. It is clear that it is surjective and its kernel
is J ; the fact that it is multiplicative follows immediately from the definition of
multiplication in A /J . ��

Can we add C∗-structure to our quotient? Specifically, if A is a C∗-algebra, can
we define an involution on the quotient A /J to make it a C∗-algebra? We won’t
tackle this question here, except to make some observations about what the issues
are. If we are able to show that closed ideals in a C∗-algebra are self-adjoint (mean-
ing J ∗ = J ) then setting (A+J )∗ = A∗+J will be well-defined, and is readily
verified to be an involution on the Banach algebra A /J . One must then check that
the C∗-identity holds:

‖A+J ‖2 = ‖(A∗ +J )(A+J )‖

for all A in A . This takes some work, and since we will not need it in any of what
follows, we refer the interested reader to [11] for a proof.

Note that the ideal K = K (H ) of compact operators in the bounded op-
erators on a Hilbert space has this “self-adjoint” property just described: if T ∈
B(H ) is compact, so is T ∗, by Proposition 4.12. Suppose we form the quotient
B(H )/K (H ), called the Calkin algebra, and consider this simply as a Banach
algebra, with unit I +K . We can ask about the spectrum of an element T +K in
this algebra:

λ ∈ σ(T +K ) ⇐⇒ (T −λ I)+K is not invertible in B(H )/K (H ).

Thus λ ∈ σ(T +K ) if and only if there is no S ∈ B(H ) with I − S(T −λ I) and
I − (T − λ I)S both compact. We call the spectrum of T + K the essential spec-
trum of T and denote it σe(T ). One sense of this terminology is that the essential
spectrum of an operator is unchanged under “compact perturbations” of the oper-
ator: σe(T ) = σe(T + K) whenever K is a compact operator. More generally, the
“essential” properties of an operator T ∈B(H ) are those of its image in the Calkin
algebra. Thus the essential norm of T , ‖T‖e, is the norm of T +K in the Calkin
algebra; that is, ‖T‖e is the distance from the operator T to the ideal K (H ). The
essential spectral radius of T is the maximum modulus of points in the essential
spectrum of T . By Theorem 5.15, the essential spectral radius is given by
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re(T ) = lim
n→∞

(‖T n‖e)
1
n .

An operator T is termed “essentially normal” if the coset T +K is normal in the
Calkin algebra. Notice that this is equivalent to the requirement that T ∗T −T T ∗ be
compact. Essential invertibility of T is the requirement that T be “invertible modulo
the compacts.” This concept will be explored more fully in Section 5.8.

Returning to the general Banach algebra setting, it is easy to see that the kernel of
a complex homomorphism ϕ : A → C is a closed ideal in A . The fact that ker ϕ is
an ideal comes from the linear and multiplicative properties of ϕ . It is closed since
it is the inverse image of 0 under the continuous function ϕ .

To get at a deeper understanding of ideals in Banach algebras, and in particu-
lar maximal ideals, we will restrict our attention for a bit to commutative Banach
algebras, where we will find a rich theory. This is the subject of the next section.

5.4 Commutative Banach Algebras

Recall that a complex homomorphism of a unital commutative Banach algebra is
a nontrivial (not identically 0) multiplicative linear functional ϕ : A → C, which
is necessarily continuous and has norm 1. We will denote the collection of all such
nontrivial multiplicative linear functions by MA , and call this set (for reasons that
will soon become clear) the maximal ideal space of A . At the moment its just a set,
with no structure, although we will eventually put a useful topology on it. It is not a
linear space.

The next theorem is key, and explains our terminology.

Theorem 5.26. In a unital commutative Banach algebra A , for every ϕ in MA ,
the kernel of ϕ is a maximal ideal of A , and conversely, every maximal ideal in A
is the kernel of some ϕ ∈ MA .

Proof. First suppose M is a maximal ideal in A , so that M is closed and A /M is
a unital Banach algebra. We show that this quotient is isomorphic to C by showing
that every nonzero element is invertible and invoking Theorem 5.12, the Gelfand–
Mazur theorem.

Pick X ∈ A , with X not in M ; we wish to show that X +M is invertible in the
quotient algebra. Set J = {AX +Y : A ∈ A ,Y ∈ M }. It is easy to see that this is
an ideal that properly contains M . Since M is maximal, we must have J = A ,
and thus there are elements A ∈ A and Y ∈ M with AX +Y = I. This says X +M
is invertible, with inverse A + M . By the Gelfand–Mazur theorem we know that
A /M is isometrically isomorphic to C, via an isomorphism which we denote by
i. The quotient map Π : A → A /M is a homomorphism, so that the composition
i◦Π is a complex homomorphism of A . Its kernel is easily seen to be M .

For the converse direction, let ϕ be a multiplicative linear functional on A . We
have already observed that its kernel is a closed ideal in A . The maximality of this
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ideal follows from Exercise 3.26 in Chapter 3, since it says that the dimension of
A /ker ϕ is one. ��

Thus the map which sends ϕ ∈ MA to its kernel maps onto the set of maximal
ideals in M . It is easy to see that this mapping is also one-to-one. If ϕ1 and ϕ2 are
two multiplicative linear functionals on A with the same kernel, we claim ϕ1 = ϕ2.
We have ϕ1(I) = 1 = ϕ2(I). Let A be arbitrary in A . Setting ϕ1(A) = α we have
ϕ1(A−αI) = 0, and thus A−αI must be in the kernel of ϕ2. This says ϕ2(A) =
α . Since A was arbitrary, we conclude that ϕ2 = ϕ1. The correspondence between
nontrivial multiplicative linear functionals and maximal ideals is thus one-to-one.

We now look at an example, which will suggest our next major theorem.

Example 5.27. Suppose A =C(X) for some compact Hausdorff space X . We claim
that every nontrivial multiplicative linear functional on C(X) is an evaluation func-
tional, i.e. has the form evx( f ) = f (x) for some x ∈ X . This is equivalent to the
statement that the maximal ideals in C(X) all have the form

Mx ≡ { f ∈C(X) : f (x) = 0}

for some fixed x ∈ X . Since we already know that the evaluation functionals are
multiplicative linear functionals with kernel Mx, it suffices to show that every proper
ideal is contained in at least one Mx. Assume, for a contradiction, that we have a
proper ideal J so that for each x ∈ X , we may find f ∈ J with f (x) �= 0. By
continuity, f is then nonzero on an open set containing x. Thus, associating to each
x in X such a function f and open set O we get an open cover of the compact
set X , and we may find a finite number of points x1,x2, . . . ,xn, with corresponding
functions f j and open sets O j covering X such that f j(y) �= 0 for all y ∈ O j. Now
∑n

1 f j f j is in J and is positive on X , hence invertible in C(X). Since a proper ideal
cannot contain an invertible element, we have our desired contradiction.

Now we know that the spectrum of an element f in the Banach algebra C(X) is
precisely the range of f , f (X) = { f (x) : x ∈ X}. Since the multiplicative linear func-
tionals are the evaluation functionals, this says σ( f ) = {ϕ( f ) : ϕ ∈MA }. The next
remarkable theorem says that exactly the same description holds for an arbitrary
element of any commutative unital Banach algebra.

Theorem 5.28. Suppose A is a commutative unital Banach algebra and let A ∈A .
We have

σ(A) = {ϕ(A) : ϕ ∈ MA }.

Proof. Fix A ∈ A and suppose λ ∈ σ(A). Then A−λ I is not invertible and

{(A−λ I)B : B ∈ A }

is a proper ideal (it can’t contain I), and hence is contained in a maximal ideal,
which by Theorem 5.26 is the kernel of some multiplicative linear functional ϕ .
Since ϕ(A−λ I) = 0, we have λ = ϕ(A).
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Conversely, if λ is not in σ(A), find B so that (A−λ I)B = I. Given any nontrivial
multiplicative linear functional ϕ on A , ϕ(A−λ I)ϕ(B) = ϕ(I) = 1 so that we must
have ϕ(A−λ I) �= 0, or ϕ(A) �= λ for all ϕ ∈ MA . ��

We can read off some quick corollaries to the last theorem.

Corollary 5.29. An element A in a unital commutative Banach algebra A is invert-
ible if and only if ϕ(A) �= 0 for all ϕ ∈MA . Furthermore, A is invertible if and only
if A lies in no proper ideal of A .

Proof. The first statement follows immediately from the theorem. For the second
statement, notice that if A is not invertible, {AB : B∈A } is a proper ideal containing
A, and, as previously observed, no proper ideal contains an invertible element. ��

Corollary 5.30. For every A in a unital commutative Banach algebra A , and every
ϕ ∈ MA , |ϕ(A)| ≤ r(A) ≤ ‖A‖.

Proof. Only the first inequality is new, and it is an immediate consequence of The-
orem 5.28. ��

Corollary 5.29 says that every nonzero noninvertible element A in a unital com-
mutative Banach algebra sits in a proper ideal (namely {BA : B ∈ A }) and hence in
a maximal ideal, which is the kernel of a nontrivial multiplicative linear functional.
In the case that the only noninvertible element is 0, we know by Theorem 5.12 that
A is isometrically isomorphic to C, and this isomorphism is a nontrivial complex
homomorphism on A . Commutativity is essential here; there are unital Banach al-
gebras with no nontrivial ideals, see Exercise 5.22.

We can combine the results of Theorems 5.28 and 5.21 to obtain information on
the spectrum of any self-adjoint element of a commutative unital C∗-algebra.

Theorem 5.31. If A is a commutative unital C∗-algebra and A ∈ A is self-adjoint,
then σ(A) is contained in the real line.

Proof. If λ ∈ σ(A), then by Theorem 5.28 λ = ϕ(A) for some ϕ ∈ MA . Using
Theorem 5.21 we have

λ = ϕ(A) = ϕ(A∗) = ϕ(A) = λ

since A is self-adjoint. ��

The same conclusion holds in unital C∗-algebras that are not commutative; see
Theorem 5.49 below.

Right now MA is just a set. We want to put a topology on it. Since we know
each ϕ ∈MA is a (multiplicative) linear functional of norm 1, we can think of MA

as sitting inside the norm-closed unit ball of A ∗, the dual space. Thus we might
expect to use the norm-topology, i.e., the topology it inherits as a subset of A ∗, but
this turns out to not be the most useful choice. In the next section we discuss the
“weak*” topology (on the dual of a Banach space) and weak topologies in general;
with this new notion in hand we will then return to our study of MA .
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5.5 Weak Topologies

The basic idea for weak topologies is as follows. Start with a Banach space X and
a vector space Y of linear functionals on X rich enough to separate the points of
X ; that is, given x1 �= x2 in X , there exists ϕ in Y with ϕ(x1) �= ϕ(x2). The Y -
weak topology on X is defined to be the weakest (or coarsest) topology (having the
smallest collection of open sets) for which all functions in Y are continuous. That
is, we want ϕ : X → C to be continuous for each ϕ in Y , so that, for example, each
of the sets {ϕ−1(U) : ϕ ∈ Y and U is open in C} is decreed to be a Y -weak open in
X , as are all unions of finite intersections of such sets. By requiring Y to separate
the points of X we guarantee that the Y -weak topology is Hausdorff, as follows. If
x1 �= x2 we may find ϕ in Y with ϕ(x1) �= ϕ(x2). Find disjoint open sets U1 and U2
in C containing, respectively, ϕ(x1) and ϕ(x2). The sets ϕ−1(U1) and ϕ−1(U2) are
Y -weakly open sets in X , which are disjoint and contain x1 and x2, respectively.

At the moment, we are primarily interested in the following Y -weak topology.
Let X = A ∗, the dual space of a Banach space A , and let

Y = {A∗∗ ∈ A ∗∗ : A ∈ A }.

Recall that for A ∈ A , A∗∗ is the bounded linear functional on A ∗ defined by
A∗∗(�) = �(A) for � ∈ A ∗. As a consequence of the Hahn–Banach theorem we
know that ‖A∗∗‖ = ‖A‖ (see the discussion following Corollary 3.5). We have
{A∗∗ : A ∈ A } ⊆ A ∗∗, with this containment possibly proper. With the choice
X = A ∗,Y = {A∗∗ : A ∈ A } we call the Y -weak topology on A ∗ the weak*
topology on A ∗. Summarizing, the weak* topology on the dual space A ∗ is the
weakest topology allowing the linear functionals from A ∗ to C taking � in A ∗

to �(A) = A∗∗(�) to be continuous, for every A ∈ A . Note that Y does separate
the points of X : If �1 �= �2 in A ∗, this means that there exists some A in A with
�1(A) �= �2(A) and A∗∗ is in Y with A∗∗(�1) �= A∗∗(�2). A sub-basis for the weak*
topology is

{(A∗∗)−1(U) : U is open in C and A ∈ A }.
By taking finite intersections of these sub-basis elements we get a basis for the
weak* topology. Every weak* open set is then a union of sets from this basis. The
weak* open sets are also open in the norm topology, but not conversely; see Exer-
cise 5.29.

Another weak topology on X = A ∗ of interest comes from the choice Y = A ∗∗.
This is called the weak topology. When A is a Hilbert space, or more generally a
reflexive Banach space, the weak and weak* topologies are the same, since A ∗∗ =
{A∗∗ : A ∈A } under the natural map. In general, the weak* topology is coarser than
the weak topology (there are fewer open sets, and weak convergence implies weak*
convergence).

In analysis we “understand” topologies by understanding convergence in the
topology. As a first step in this direction, we describe when a sequence of points in
A ∗ converges in the weak* topology. Then we will discuss a needed generalization
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of this result, with “sequence” replaced by “net,” a concept defined later in this
section.

Recall that a sequence {xn} in a topological space is said to converge to x if for
every open set U containing x, there exists N (depending on U) so that n≥N implies
xn ∈U . In a Hausdorff space, if a sequence converges its limit point must be unique.

Proposition 5.32. Suppose {ϕn} is a sequence in A ∗. We have ϕn →ϕ in the weak*
topology if and only if ϕn(A) → ϕ(A) for each A in A .

Proof. If ϕn → ϕ (weak*) and A is in A , then by definition A∗∗ is continuous as a
map of (A ,weak*) into C, so A∗∗(ϕn)→ A∗∗(ϕ). By the definition of A∗∗, this says
ϕn(A) → ϕ(A), as desired.

Conversely, suppose ϕn(A)→ ϕ(A) as n → ∞ for each A in A . We want to show
that ϕn → ϕ (weak*). To this end, let O be a weak* open set containing ϕ . Our task
is to show that there exists N so that if n ≥ N, then ϕn is in O . Now there is a basic
open set containing ϕ and contained in O; that is, there are points A1,A2, . . . ,Am in
A and open sets U1,U2, . . . ,Um in C with

ϕ ∈
m⋂

j=1

(A∗∗
j )−1(Uj) ⊆ O.

This means that ϕ(A j) = A∗∗
j (ϕ) ∈ Uj for 1 ≤ j ≤ m. Since we are given that

ϕn(A) → ϕ(A) as n → ∞, for each A in A , we have in particular, that for each j,
1 ≤ j ≤ m, there is a finite Nj such that if n ≥ Nj then ϕn(A j) ∈Uj, or equivalently,
A∗∗

j (ϕn) ∈Uj. Let N = max{Nj : 1 ≤ j ≤ m}. For n ≥ N we have

ϕn ∈
m⋂

j=1

(A∗∗
j )−1(Uj) ⊆ O

and ϕn is in O for all n ≥ N, as desired. ��

Proposition 5.32 explains why the weak* topology is often called the “topology
of pointwise convergence.”

Example 5.33. Consider the space �2, and recall that by Theorem 1.29, every
bounded linear functional on �2 is given by 〈·,y〉 for some y ∈ �2. Let en be nth
standard basis vector for �2, whose entries are all 0 except for a 1 in the nth posi-
tion, and let ϕn denote the linear functional on �2 given by inner product with en:
ϕn(x) = 〈x,en〉. We claim that ϕn → 0 weak*. By Proposition 5.32, this will follow
if we can show that

ϕn(x) → 0

for each x in �2. By Parseval’s identity,

∞

∑
n=1

|〈x,en〉|2 < ∞
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and hence 〈x,en〉 → 0 for each x ∈ �2, as desired. Note that ϕn does not converge to
0 in the norm topology, since ‖ϕn‖ = 1.

In a metric space, sequences are adequate to detect limit points and continuity.
The meaning of this assertion is as follows. Suppose X is a metric space and A is a
subset of X . Let A denote the closure of A.

(a) We have x ∈ A if and only if there is a sequence of points in A converging to x.
(b) A function f : X →Y , where Y is a topological space, is continuous if and only

if whenever {xn} is a sequence in X with xn converging to x, then the sequence
f (xn) converges to f (x).

The “only if” direction of (a) is not true in complete generality, that is, if X is a
general topological space, it may be the case that a point in the closure of A cannot
be reached as the limit of a sequence of points in A. An example is given in Exer-
cise 5.30. Similarly the “if” direction of (b) may fail in some general topological
spaces.

To recover results that resemble (a) and (b) but hold in general topological spaces
we need to generalize the notion of a sequence to that of a “net.”

Definition 5.34. A directed set is a set I together with a partial order ≤ such that if
α and β are in I, then there exists γ in I with α ≤ γ and β ≤ γ .

We give some examples. If I is the set of positive integers N, and we let ≤ be the
usual ordering on N, then (N,≤) is a directed set. The collection I of all subsets of
a given set S, partially ordered by inclusion, form a directed set. Two other useful
examples of directed sets are as follows.

Example 5.35. In any topological space, let I be the collection of all open sets con-
taining a fixed point x0. Partially order the elements of I by reverse inclusion: U ≥V
means U ⊆V (bigger sets are smaller in the partial ordering). Given U1 and U2 in I,
the open set U1 ∩U2 satisfies U1 ∩U2 ≥U1 and U1 ∩U2 ≥U2.

Example 5.36. Let S be any set and let I be all finite subsets of S. Partial order by
inclusion, so F1 ≥ F2 means F2 ⊆ F1. Given any pair of sets F1 and F2, F1 ∪F2 ≥ F1
and F1 ∪F2 ≥ F2.

One can think of a sequence in a set X as a function from N into X . The next
definition generalizes this notion.

Definition 5.37. A net in a set X is a pair ((I,≤),x) where (I,≤) is a directed set
and x is a function from I into X . For α in I, denote x(α) by xα . The net is denoted
{xα}α∈I , and the set I is called the index set for the net. When X is a topological
space, we say the net {xα}α∈I converges to x0 in X if for each open set U containing
x0 there exists α ∈ I such that β ∈ I and β ≥ α implies xβ is in U .

Nets are adequate to detect limit points. This is the content of the next result.

Theorem 5.38. Suppose that A is a subset in a topological space X. We have x ∈ A
if and only if there is a net of points in A converging to x.
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Proof. Suppose that x is in A. Recall that A can be described as the set of points
y such that every open set containing y intersects A. Let I be the collection of all
open sets containing our given x, partially ordered by reverse inclusion; this is our
directed set. For each U ∈ I, let xU be a point of A∩U . Thus {xU}U∈I is a net and
xU → x, since given any open set V containing x, if U ≥V we have xU ∈U ⊆V .

Conversely, if there is a net {xα} of points in A converging to x, then any open
set containing x will contain some points of this net, and thus some points of A.
Therefore x is in A. ��

Our next result shows that nets are adequate to detect continuity.

Theorem 5.39. Suppose that X and Y are topological spaces. A function f : X →Y
is continuous at x0 in X if and only if the net { f (xα)}α∈I converges to f (x0) in Y
whenever {xα}α∈I is a net in X converging to x0.

Proof. Assume that f is continuous at x0 and suppose {xα} is a net in X converging
to x0. Let V be open in Y with f (x0) ∈V . By continuity, U ≡ f−1(V ) is open in X ,
and U contains x0. There must exist β such that xα is in U whenever α ≥ β . Thus
for all α ≥ β , f (xα) is in V ; this says f (xα) → f (x0). The converse direction is left
as Exercise 5.31. ��

We can fully understand the weak* topology by understanding the convergence
of nets. The next result is a generalization of Proposition 5.32, with sequences re-
placed by nets.

Theorem 5.40. If {ϕα}α∈I is a net in A ∗ and ϕ is in A ∗, for some Banach space
A , then we have ϕα → ϕ weak* in A ∗ if and only if ϕα(A) → ϕ(A) for each A in
A .

The proof, which is a straightforward modification of the proof of Proposi-
tion 5.32, is left to the reader as Exercise 5.27.

By the results in Section 4.1, and Exercise 4.3 in Chapter 4, we know that the
norm-closed unit ball in a normed linear space X is compact (relative to the norm
topology) if and only if X is finite-dimensional. Moving to infinite dimensions, one
of the main virtues of using the weak* topology is to obtain compactness of the
norm-closed unit ball in this new topology. The next result is traditionally called the
Banach–Alaoglu theorem.

Theorem 5.41 (Banach–Alaoglu Theorem). Let A ∗ be the dual space of some
Banach space A . The norm-closed unit ball, {ϕ ∈ A ∗ : ‖ϕ‖ ≤ 1}, is compact in
the weak* topology.

The proof of Theorem 5.41 depends on the Tychonoff theorem from topology,
which says that an arbitrary product of compact sets is compact in the product topol-
ogy. What is the product topology? If we have an indexed family of topological
spaces {Xα}α∈I , the product Πα∈IXα is the set of all functions f : I →∪α∈IXα such
that f (α) ∈ Xα . When I is finite or countable, we think of Πα Xα as tuples or se-
quences {xk} where xk is in Xk. Carrying over this notation to larger index sets we
will write {xα}α∈I ∈ Πα∈IXα . For each β ∈ I define
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πβ : Πα∈IXα → Xβ

by πβ ({xα}) = xβ or πβ ( f ) = f (β ), and call this the projection onto the β th factor.
It assigns to each element of the product space its β th coordinate. The product topol-
ogy on the product space is the weakest topology that makes each πβ continuous.
Thus the sets

{π−1
β (Uβ ) : Uβ is open in Xβ},

where β is in I, are open in the product topology, and all finite intersections of sets
of this type form a basis for the product topology. A net fγ in Πα∈IXα converges to
f in the product topology if and only if

πβ ( fγ) → πβ ( f )

for all β ∈ I, or equivalently, if and only if fγ(β ) → f (β ) for all β in I. To prove
this statement, notice that one direction is immediate from the definition. The other
direction follows similarly to the proof of Theorem 5.40. We are now ready to prove
Theorem 5.41.

Proof (Theorem 5.41). Suppose that X∗ is the dual of a Banach space X . Let B
denote the norm-closed unit ball in X∗:

B = {ϕ ∈ X∗ : ‖ϕ‖ ≤ 1}.

We wish to show that B is compact in the weak* topology.
For each x in X , consider the closed disk

Dx = {α ∈ C : |α| ≤ ‖x‖}

and note that Dx is compact in C. By Tychonoff’s theorem, the Cartesian product

C = Πx∈X Dx

is compact in the product topology τ . Elements of C are functions f from the index
set X to ∪x∈X Dx ⊆ C, assigning to each x ∈ X a number f (x) in Dx; that is, | f (x)| ≤
‖x‖ for each x in X . Each ϕ in B is a linear function from X to C of norm at most
1; that is |ϕ(x)| ≤ ‖x‖ for each x in X . This means we can think of B as a subset of
C, consisting of precisely those elements of C that are linear. Moreover, the weak*
topology on B (inherited from the weak* topology on X∗) and the product topology
on B considered as a subset of C coincide, since both are the topologies of pointwise
convergence: A net {ϕα} in B converges weak* to ϕ if and only if ϕα(x) → ϕ(x)
for all x ∈ X , while ϕα → ϕ in the product topology τ if and only if πx(ϕα)→ πx(ϕ)
for each x ∈ X , or equivalently, if and only if ϕα(x) → ϕ(x) for each x ∈ X .

We claim that B is closed in the product topology τ . If the claim is verified, then
we see that B is a τ-closed subset of the τ-compact space C, and so it is τ-compact
and hence also weak* compact. To verify the claim, suppose that ϕα is a net in B
with ϕα → f in the product topology. We want to show f is in B. We know that f
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is in C, so that | f (x)| ≤ ‖x‖ for all x in X . Thus the only issue is whether f is linear.
Let λ be in C. We have ϕα(λx) → f (λx) and ϕα(λx) = λϕα(x) → λ f (x). This
shows that f (λx) = λ f (x) for all x ∈ X and scalars λ . A similar argument shows
that f (x1 + x2) = f (x1)+ f (x2) and we conclude that f is linear. ��

Many names are justifiably associated with Theorem 5.41. As we have just seen,
from the right perspective one could view it as a corollary to Tychonoff’s theorem of
1930 (proved first for a product of compact intervals and extended by Čech in 1937
to more general spaces). In addition to Banach and Alaoglu, Bourbaki, Kakutani,
and Shmulyan could all be mentioned for work during the period 1929–1939. Ver-
sions of the theorem in particular settings appeared earlier in work of Helly, Hilbert,
and Riesz.

While the concept of a directed system or net comes from E. Moore and H. Smith,
the terminology “net” is attributed to N. Steenrod. D. Sarason gives the following
story about how it came into existence [42]:

Kelley describes Steenrod as being especially creative in devising terminology. Steenrod is
responsible for the term “net” as it is now commonly used for generalized sequence.... The
term first appeared in this role in a 1950 paper of Kelley. Kelley had been planning to use
the term “way”; that would have resulted in what we now call a “subnet” being referred to
as a “subway.” Steenrod, when informed by Kelley of his plan, apparently regarded Kelley’s
choice of terminology as frivolous, and after being prodded by Kelley, he suggested the term
“net” as an alternative. His judgment prevailed (p. 18–19).

5.6 The Gelfand Transform

The ending point of the last section—the Banach–Alaoglu theorem—is our reentry
point for continuing our studying of MA , the maximal ideal space of A , for a unital
commutative Banach algebra A . We now think of MA as sitting inside the norm-
closed unit ball of A ∗ and let it inherit the weak* topology from A ∗. This is the
only topology we will ever consider on MA .

Theorem 5.42. In the (relative) weak* topology, MA is a compact Hausdorff
space.

Proof. Since we already know that A ∗ with the weak* topology is Hausdorff, and
a subspace of a Hausdorff space is Hausdorff, we need only check the compactness
assertion. For this, it suffices to show MA is closed in the weak* topology; then
the Banach–Alaoglu theorem will guarantee that, as a closed subset of the weak*
compact set {� ∈ A ∗ : ‖�‖ ≤ 1}, MA is compact.

To see that MA is weak* closed, let {ϕα}α∈I be a net in MA converging to
ϕ ∈ A ∗, that is, ϕα → ϕ weak *. To show ϕ is in MA we show it is multiplicative.
Let A and B be in A . Since ϕα →ϕ weak*, we have ϕα(A)→ϕ(A), ϕα(B)→ϕ(B),
and ϕα(AB) → ϕ(AB). On the one hand,

ϕα(AB) = ϕα(A)ϕα(B) → ϕ(A)ϕ(B),
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while on the other hand ϕα(AB) → ϕ(AB). In a Hausdorff space, a net converges
to at most one point (see Exercise 5.31), and thus ϕ(AB) = ϕ(A)ϕ(B), and ϕ is
multiplicative. Since 1 = ϕα(I) → ϕ(I), ϕ is nontrivial, and thus ϕ is in MA . ��

Since X = MA is a compact Hausdorff space, C(X) = C(MA ), the space of
continuous (complex-valued) functions on MA in the supremum norm, is a unital
Banach algebra. There is a natural candidate for a linear map from A to C(MA ),
namely the map that sends A ∈ A to the function whose value at ϕ is ϕ(A). Explic-
itly, let

Γ : A →C(MA )

be defined by Γ (A)(ϕ) = ϕ(A) for ϕ in MA . We do need to verify that Γ (A) is
continuous on MA , and we do this momentarily. More briefly, we will write Â for
Γ (A), so that Â will be the (continuous) function on MA taking the value ϕ(A) at
ϕ . We will call Â the Gelfand transform of A, and the map Γ itself the Gelfand map,
or Gelfand transform, of A .

Theorem 5.43. Let A be a commutative unital Banach algebra. For each A in A ,
Â is continuous on MA . The map Γ is a continuous homomorphism of the commu-
tative unital Banach algebra A into C(MA ). Furthermore,

‖Γ (A)‖∞ = r(A) ≤ ‖A‖

for all A, and Γ has norm 1. The Gelfand map is one-to-one if and only if the
intersection of all of the maximal ideals of A is {0}.

Proof. The continuity of Â follows immediately from the definition of the weak*
topology: If ϕα is a net in MA converging weak* to ϕ , then

Â(ϕα) ≡ ϕα(A) → ϕ(A) = Â(ϕ).

By Theorem 5.39, this shows that Â is continuous.
It is easy to check that Γ is linear and preserves multiplication; we leave the

details to the reader. Recalling that MA is compact,

‖Â‖∞ = max{|Â(ϕ)| : ϕ ∈ MA } = max{|ϕ(A)| : ϕ ∈ MA } = r(A),

since σ(A) = {ϕ(A) : ϕ ∈ MA }. Since r(A) ≤ ‖A‖, this says ‖Γ (A)‖∞ ≤ ‖A‖ and
the Gelfand map is contractive, hence also continuous. Consideration of the identity
shows that the Gelfand map has norm 1.

Since Γ (A) is the zero function if and only if ϕ(A) = 0 for all ϕ ∈ MA , that is,
if and only if A lies in the kernel of every ϕ ∈ MA , the kernel of the map Γ is the
intersection of all the maximal ideals of A . This gives the final statement. ��

The intersection of all maximal ideals of A is called the radical of A . When
the radical of A is {0}, A is called semisimple. Thus Theorem 5.43 says that in a
commutative unital Banach algebra A , the Gelfand map is one-to-one if and only if
A is semisimple.
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There is more that can be said when A is a unital, commutative C∗-algebra. In-
formally, the next result says that every such C∗-algebra “is” C(X) for some compact
Hausdorff space X .

Theorem 5.44. If A is a unital, commutative C∗-algebra, the Gelfand map Γ is an
isometric ∗-isomorphism of A onto C(MA ).

Proof. By virtue of Theorem 5.43, we only need to check that Γ is ∗-preserving,
isometric, and bijective. We’ll start with the ∗-preserving property, i.e., we show
that Γ (A∗) = Γ (A), or, in our briefer notation, Â∗ = Â for arbitrary A. Given ϕ ∈
MA , Â∗(ϕ) = ϕ(A∗) and Â(ϕ) = ϕ(A). Recall (Theorem 5.21) that a complex
homomorphism of a C∗-algebra is automatically a ∗- homomorphism, so ϕ(A∗) =
ϕ(A). This verifies Â∗ = Â.

We know from Theorem 5.43 that ‖Â‖∞ ≤ ‖A‖ for all A ∈ A . If in addition A is
self-adjoint, then

‖A‖ = r(A) = ‖Â‖∞ = ‖Γ (A)‖∞.

In particular, for any A we have ‖Γ (A∗A)‖∞ = ‖A∗A‖, since A∗A is self-adjoint.
Thus for any A

‖Γ (A)‖2
∞ = ‖Γ (A)∗Γ (A)‖∞ = ‖Γ (A∗A)‖∞ = ‖A∗A‖ = ‖A‖2,

where we have used the C∗-identity in the first and last equalities, and the fact that Γ
is a ∗-homomorphism. This line of computation shows that Γ is an isometry, hence
it is a ∗-isomorphism onto its image in C(MA ).

To finish the proof, we need to show that the image of A under Γ is all of
C(MA ). To do this, we use the Stone–Weierstrass theorem (see Section A.4 in the
Appendix). We claim that Γ (A ) is a closed subspace of C(MA ) which is also a
subalgebra of C(MA ), containing the constant functions, separating the points of
MA , and closed under conjugation. Since Γ is isometric and a ∗-homomorphism,
we see that Γ (A ) is a closed subalgebra which is also closed under conjugation.
Since Γ (λ I) is the constant function λ , this subalgebra contains the constants. Its
clear that it separates points, since if ϕ1 �= ϕ2 in MA , then we may find A ∈A with
ϕ1(A) �= ϕ2(A) and thus Γ (A)(ϕ1) �= Γ (A)(ϕ2). Invoking the Stone–Weierstrass
theorem we conclude that Γ (A ) = C(MA ). ��
Example 5.45. Start with any compact Hausdorff space X and let A = C(X) be the
commutative unital C∗-algebra of continuous functions on X , in the supremum norm
as usual. Notice that X is homeomorphic to MA in the weak* topology, via the map
that sends x ∈ X to the multiplicative linear functional evx of evaluation at x; to see
that this mapping is onto MA we are making use of Example 5.27 in Section 5.3.
What is the Gelfand map Γ : C(X) → C(MA )? By definition, we have Γ ( f ) = f̂
where f̂ (ϕ) = ϕ( f ), for f ∈ A = C(X) and ϕ ∈ MA . But each ϕ has the form evx
for some x ∈ X , and f̂ (evx) = evx( f ) = f (x). Thus “Γ ( f ) = f ” once we identify
x ∈ X with evx in MA .

We seem to be severely limited by the “commutativity” hypothesis of the last
theorem, but we will next see one important situation in which we can get around
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this. We again focus on a unital C∗-algebra A . For any subset S of A , let C∗(S)
denote the C∗-algebra generated by the elements of S together with the identity I;
this is the intersection of all C∗-algebras containing I and S. For the case that the
set S is the singleton {A}, we simply write C∗(A). This is the norm-closure of all
finite linear combinations of “words” in A,A∗, I, where a “word” is a finite product
T1T2 · · ·Tn with Tj ∈ {A,A∗, I} for each j. In the special case that A is normal, then
we may permute A and A∗ and thus C∗(A) is the closure of all polynomials in A and
A∗, p(A,A∗) = ∑c(m,n)An(A∗)m, where n,m are nonnegative integers.

Clearly, if A is normal, then C∗(A) is a commutative, unital C∗-algebra, and by the
Gelfand theory, C∗(A) is isometrically ∗-isomorphic to the C∗-algebra of continuous
functions on the maximal ideal space of C∗(A) via the Gelfand transform Γ . What
we would like to be able to do is identify this maximal ideal space more explicitly,
that is, we seek to replace MC∗(A) by a set homeomorphic to it via a “natural” map.
Moreover, this identification should depend on A in some clear way. This is the
content of our next result. As motivation, recall that in any commutative Banach
algebra, λ ∈ σ(A) if and only if λ = ϕ(A) for some ϕ in the maximal ideal space. In
the situation we’re currently interested in, where our commutative Banach algebra is
C∗(A) for some normal A, ϕ is unique: ϕ1(A) = ϕ2(A) implies that ϕ1(A∗) = ϕ2(A∗),
since ϕ j(A∗) = ϕ j(A) for j = 1,2, and thus ϕ1 agrees with ϕ2 on any polynomial
p(A,A∗) by linearity and multiplicativity, and hence on all of C∗(A), by continuity.
This suggests we may be able to identify the maximal ideal space of C∗(A) with
σ(A), the spectrum of A, via a homeomorphism. Such a homeomorphism would
then allow us to produce a ∗-isomorphism between C∗(A) and C(σ(A)).

Theorem 5.46. Suppose A is a singly generated, commutative, unital C∗-algebra,
with A = C∗(A) for some A which is necessarily normal. There is a unique ∗-
isomorphism of A onto C(σ(A)) mapping A to the identity function on σ(A).

Proof. We know that A is the closure of the polynomials in A and A∗, and that
the Gelfand map Γ is an isometric ∗-isomorphism of C∗(A) onto C(MA ). Define
τ : MA �→ σ(A) by τ(ϕ) = ϕ(A) (of course, τ is just Â, but we find it convenient to
use this alternate notation). We are using the fact that

σ(A) = {ϕ(A) : ϕ ∈ MA };

this depends on the commutativity of A . Thus τ maps onto σ(A) and is continuous
(where we use the weak* topology on MA ). The map τ is also one-to-one; this is the
uniqueness observation we made before the statement of the theorem. Thus τ , being
a continuous bijection from the compact set MA to the Hausdorff space σ(A), is a
homeomorphism. The homeomorphism τ induces a ∗-isomorphism h : C(MA ) �→
C(σ(A)) by h( f ) = f τ−1 (the reader is invited to check the details of this statement
in Exercise 5.33). Thus h ◦Γ is a ∗-isomorphism from C∗(A) onto C(σ(A)), and
under this isomorphism A gets mapped to Â ◦ τ−1 ∈ C(σ(A). What is Â ◦ τ−1? We
claim this is just the identity function on σ(A): For λ ∈ σ(A), τ−1(λ ) = ϕ if and
only if λ = τ(ϕ) if and only if ϕ(A) = λ , and thus Â(τ−1(λ )) = Â(ϕ) = ϕ(A) = λ ,
where ϕ is the unique multiplicative linear functional with ϕ(A) = λ .
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Finally we claim that this is the unique ∗-isomorphism of C∗(A) onto C(σ(A))
sending A to the identity function ζ (z) = z. If A is mapped to ζ , then A∗ is mapped
to ζ and any polynomial p(A,A∗) in A and A∗ must be mapped to the corresponding
polynomial p(z,z) in z and z. The uniqueness statement then follows, since A is the
closure of the polynomials p(A,A∗). ��

Recall that if Banach algebras A and B have a common identity and A ∈ B ⊆
A , then by Exercise 5.18, σA (A) ⊆ σB(A) where the containment may be strict,
while ∂σB(A) ⊆ ∂σA (A). We will see that if A and B are required to be C∗-
algebras, we have σA (A) = σB(A), a result we will refer to as “spectral perma-
nence.” To prove this, we need a lemma. It reduces the issue of invertibility to the
question of invertibility of self-adjoint elements.

Lemma 5.47. Suppose A is a unital C∗-algebra. An element A ∈ A is invertible in
A if and only if AA∗ and A∗A are both invertible.

Proof. The “only if” direction is trivial, so we omit its proof. Suppose now that
there exists B ∈ A with B(A∗A) = I, so that BA∗ is a left inverse for A. Similarly, if
C ∈ A satisfies (AA∗)C = I, then A∗C is a right inverse for A. Having both a right
and left inverse, A is invertible. ��

Theorem 5.48. Suppose A and B are C∗-algebras with common identity I, and
assume B ⊆ A . If A ∈ B, then σA (A) = σB(A).

Proof. First suppose A is self-adjoint, and let C = C∗(A), the C∗-algebra generated
by A = A∗ and I. Since C is commutative and unital, the spectrum of the self-adjoint
element A in C is real (Theorem 5.31), and thus σC (A) = ∂σC (A). Now

σB(A) ⊆ σC (A) = ∂σC (A) ⊆ ∂σB(A) ⊆ σB(A),

so we must have equality throughout and σC (A) = σB(A) for self-adjoint A. Simi-
lary,

σA (A) ⊆ σC (A) = ∂σC (A) ⊆ ∂σA (A) ⊆ σA (A),

and σC (A) = σA (A). Thus we have shown that for A self-adjoint, σA (A) = σB(A).
For arbitrary A ∈ B we use Lemma 5.47. We know that

σA (A) ⊆ σB(A)

so we need only show the reverse inclusion. To this end, let λ ∈ σB(A), so that
A− λ I is not invertible in B, and by Lemma 5.47, either (A− λ I)∗(A− λ I) or
(A− λ I)(A− λ I)∗ is not invertible in B. Since both are self-adjoint, either (A−
λ I)∗(A− λ I) or (A− λ I)(A− λ I)∗ is not invertible in A by the first part of the
proof. Applying Lemma 5.47 once more, we see that λ is in σA (A) and we have
established the inclusion we needed, completing the proof. ��

We can give an important application of the last theorem. Recall that a self-
adjoint element of a commutative unital C∗ algebra has real spectrum. Now suppose
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that A is self-adjoint in the unital, but not necessarily commutative, C∗-algebra A .
Since C∗(A) is a commutative C∗-subalgebra of A containing the identity of A (by
definition), Theorem 5.48 asserts

σA (A) = σC∗(A)(A) ⊆ R.

In fact, more is true, as the next result shows.

Theorem 5.49. If A is a unital C∗-algebra, and A ∈ A is normal, then

(a) A is self-adjoint if and only if σ(A) ⊆ R.
(b) A is unitary if and only if σ(A) ⊆ ∂D.
(c) A2 = A if and only if σ(A) ⊆ {0,1}.

Proof. We give the proof of (a) and leave the remaining parts to the reader as Exer-
cise 5.35.

Let B be the commutative C∗-algebra C∗(A); Theorem 5.48 tells us that σB(A) =
σA (A). The Gelfand map Γ : B →C(MB) is a ∗-isomorphism, so A is self-adjoint
if and only if Â is self-adjoint as an element of C(MB), i.e., if and only if Â is real-
valued. By the commutativity of B, the range of Â is {ϕ(A) : ϕ ∈ MB} = σB(A).
We conclude that A is self-adjoint if and only if σB(A), or equivalently σA (A), is
contained in R. ��

An even briefer proof of the last result goes as follows: By Theorem 5.46 there is
a unique ∗-isomorphism of C∗(A) onto C(σ(A)) which takes A to the identity func-
tion on σ(A). Note Theorem 5.48 says we need not specify whether we mean the
spectrum of A relative to C∗(A), or relative to some larger C∗-algebra A containing
C∗(A). Then A is self-adjoint if and only if the identity function is real-valued on
σ(A), that is, if and only if σ(A) ⊆ R.

Theorems 5.48 and 5.46 provide us with the necessary tools to describe the con-
tinuous functional calculus, and we will turn to this in the next section.

We close this section with an example of historical importance.

Example 5.50. The space �1(Z) of doubly infinite sequences {an}∞
n=−∞ is a Banach

space in the norm ‖{an}‖ ≡ ∑∞
n=−∞ |an|. In this example we will consider a Banach

space, which we will denote W , which is isometrically isomorphic to �1(Z), and
see that there is multiplication on W that makes it a Banach algebra. The space W
consists of all complex-valued functions f on the unit circle T that can be expressed
as an absolutely convergent Fourier series:

f (eiθ ) =
∞

∑
n=−∞

aneinθ (5.2)

normed by

‖ f‖ = ‖ f‖W ≡
∞

∑
n=−∞

|an| < ∞.

The series defining f converges uniformly on T , so that any f ∈W is continuous on
T . The mapping that sends f ∈W to its sequence of Fourier coefficients { f̂ (n)}∞

n=−∞
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is clearly a linear isometry mapping W onto �1(Z). If we define multiplication of
functions in W to be pointwise multiplication, W becomes a Banach algebra. To see
this, suppose that f is as in Equation (5.2) and that g is also in W , with

g(eiθ ) =
∞

∑
n=−∞

bneinθ .

Since both series converge absolutely,

( f g)(eiθ ) = f (eiθ )g(eiθ ) =
∞

∑
n=−∞

(
∞

∑
k=−∞

akbn−k

)
einθ

so that

‖ f g‖ =
∞

∑
n=−∞

∣∣∣∣∣
∞

∑
k=−∞

akbn−k

∣∣∣∣∣
≤

∞

∑
n=−∞

∞

∑
k=−∞

|an||bn−k|

=

(
∞

∑
n=−∞

|an|
)(

∞

∑
j=−∞

|b j|
)

= ‖ f‖‖g‖.

Clearly W is commutative, and the constant function 1 serves as an identity, so W ,
called the Wiener algebra, is a commutative unital Banach algebra.

What is the maximal ideal space MW ? Each λ ∈ T determines a multiplicative
linear functional ϕλ defined by evaluation at λ ; that is ϕλ ( f ) = f (λ ). Notice that

|ϕλ ( f )| = | f (λ )| =
∣∣∣∣∣

∞

∑
n=−∞

anλ n

∣∣∣∣∣≤
∞

∑
n=−∞

|an| = ‖ f‖

and ϕ(1) = 1, so that ‖ϕλ‖ = 1 as expected. We claim that

MW = {ϕλ : λ ∈ T}.

Suppose that ϕ is an arbitrary multiplicative linear functional in MW and let λ =
ϕ(χ) where χ(eiθ ) = eiθ . We have

|λ | = |ϕ(χ)| ≤ ‖ϕ‖‖χ‖ = (1)(1) = 1.

Also,
1 = ϕ(1) = ϕ(χχ−1) = ϕ(χ)ϕ(χ−1)

so that
ϕ(χ−1) = 1/ϕ(χ) = 1/λ .
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Since
|1/λ | = |ϕ(χ−1)| ≤ ‖ϕ‖‖χ−1‖ = 1

we must have |λ | = 1. To complete the verification of the claim, we show that ϕ =
ϕλ , evaluation at our point λ in the circle. Given

f (eiθ ) =
∞

∑
n=−∞

aneinθ ,

we set

fN(eiθ ) =
N

∑
n=−N

aneinθ

so that

‖ fN − f‖ =
∞

∑
|n|=N+1

|an| → 0

as N → ∞. By the continuity of ϕ ,

ϕ( f ) = lim
N→∞

ϕ

(
N

∑
n=−N

anχn

)

= lim
N→∞

N

∑
n=−N

anϕ(χn)

= lim
N→∞

N

∑
n=−N

anϕ(χ)n

=
∞

∑
n=−∞

anλ n

= ϕλ ( f ),

as desired. It follows that the map Ψ : T → MW defined by Ψ(λ ) = ϕλ carries T
onto MW , and it is clearly one-to-one. If we give T the usual (metric) topology and
MW the weak* topology, this mapping Ψ is continuous. To verify this, note that if
λn → λ in T ,

Ψ(λn)( f ) = f (λn) → f (λ ) = Ψ(λ )( f )

for every f ∈ W , and Ψ(λn) tends to Ψ(λ ) in the weak* topology. Since both T
and MW are compact and Hausdorff, we see that Ψ is a homeomorphism of T onto
MW .

We can now easily describe the Gelfand transform Γ : W →C(MW ):

Γ ( f )(ϕλ ) = ϕλ ( f ) = f (λ ).

Though we will stick with correct notation, as in the previous line, the reader may
find it useful to also think of our homeomorphism Ψ as an “identity map,” identi-
fying ϕλ with λ and MW with T (as we did in Example 5.45). From this point of
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view, Γ ( f ) is f . In other words, Γ maps f , considered as an element of W , to f
considered as an element of C(T ).

The proof we give of the next result, called Wiener’s theorem, is often considered
to be the first spectacular success of Gelfand theory. Wiener’s original proof of this
result relied on a difficult classical analysis argument. By contrast, the elegant proof
provided later by Gelfand uses only elementary Banach algebra theory.

Theorem 5.51. Suppose f (eiθ ) = ∑∞
−∞ aneinθ lies in W. If f does not vanish on T ,

then 1/ f is also in W, that is, there exist {bn} with ∑∞
−∞ |bn| < ∞ and

1
f (eiθ )

=
∞

∑
n=−∞

bneinθ .

The statement of the theorem can also be phrased as follows: If a function f in C(T )
has an absolutely convergent Fourier series and is nonzero on T , then 1/ f has an
absolutely convergent Fourier series.

Proof (Theorem 5.51). The hypothesis on f says that ϕλ ( f ) = f (λ ) does not vanish
as λ ranges over T . Since we have shown that the functionals ϕλ exhaust MW , we
may apply Corollary 5.29 to conclude that f is invertible in W , which is the desired
conclusion. ��

In Exercise 5.37 you are asked to show that the Gelfand transform on the Wiener
algebra is not isometric, and as a consequence W cannot be made into a C∗-algebra.

5.7 The Continuous Functional Calculus

Let’s recap where we are from the last section: Given a normal element N in a unital
C∗-algebra A , the C∗-algebra C∗(N) generated by N,N∗, and I, which is the closure
of the polynomials in N and N∗, is a commutative C∗-algebra. Spectral permanence
says

σA (A) = σC∗(N)(A)

for any A ∈ C∗(N), so the subscript can be omitted without danger of misinterpre-
tation. Theorem 5.46 says there is a unique isometric ∗-isomorphism γ from C∗(N)
onto C(σ(N)) which pairs N with the identity function z on σ(N). Under this ∗-
isomorphism, N∗ and z are paired, as are cI and the constant function c, and a poly-
nomial p(N,N∗) is paired with the corresponding polynomial p(z,z). Now if f is
any continuous function on σ(N), we define f (N) to be the corresponding element
γ−1( f ) of C∗(N); note this is in agreement with our previous observations when f
is a polynomial in z and z. Clearly if f ,g ∈C(σ(N)), so that f +g and f g are also,
then

( f +g)(N) = f (N)+g(N)

and
( f g)(N) = f (N)g(N),
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since γ−1 is linear and multiplicative. This assignment f �→ f (N) is called the con-
tinuous functional calculus or the functional calculus for normal elements. It is il-
lustrated schematically below.

C∗(N)
γ−→←−γ−1

C(σ(N))

I ←−−→ 1

N ←−−→ z

N∗ ←−−→ z

N jN∗k ←−−→ z jzk

p(N,N∗) ←−−→ p(z,z)

f (N) ←−−→ f

Making this definition of f (N) immediately raises the issue of how it behaves
with respect to spectra. The next result—the full version of the spectral mapping
theorem—is to be compared with Theorem 5.14. As observed above, there is no
need to distinguish between σA and σC∗(N) in this result.

Theorem 5.52. Suppose N is a normal element in a unital C∗-algebra A and let
f ∈C(σ(N)). We have σ( f (N)) = f (σ(N)).

Proof. Since f �→ f (N) ≡ γ−1( f ) is a ∗-isomorphism of C(σ(N)) onto C∗(N) we
have

σ( f (N)) = σC(σ(N))( f ) = range f = f (σ(N)).

��
As an application, recall that we previously observed (as a consequence of the

spectral radius formula) that for a self-adjoint element A in a unital C∗-algebra,
r(A) = ‖A‖. We can now obtain a deeper result, namely that the equality of the
norm and spectral radius holds for any normal element. If N is normal in a unital
C∗-algebra, then by Theorem 5.46 there is an isometric ∗-isomorphism of C∗(N)
with C(σ(N)) which pairs N with z. Thus

‖N‖ = ‖z||∞,C(σ(N)) = max{|z| : z ∈ σ(N)} = r(N).

Thus we have shown the following result.

Theorem 5.53. For any normal element N of a unital C∗-algebra, ‖N‖ = r(N).

Definition 5.54. A self-adjoint element A of a unital C∗-algebra A is said to be
positive if its (necessarily real) spectrum is contained in [0,∞); we write A ≥ 0 in
this case. The positive elements of A are denoted A+.

For example, in the C∗-algebra C(X), where X is a compact Hausdorff space, the
positive elements are precisely the nonnegative functions.

The functional calculus for normal operators plays a role in the next result on
roots of positive elements.
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Theorem 5.55. If A ∈ A+ and n ∈ N, there is a unique B ∈ A+ satisfying Bn = A.

Proof. We establish existence first. Since by assumption, σ(A) ⊆ [0,∞), the real-
valued function f (t) = t1/n is continuous on σ(A). Thus f (A) is defined by the
functional calculus; set B = f (A). Is B self-adjoint? Yes, since f is real-valued,
hence self-adjoint as an element of C(σ(A)). Moreover, by Theorem 5.52,

σ(B) = σ( f (A)) = f (σ(A)) ⊆ [0,∞)

so that B is positive. Finally, Bn = f n(A) = A, since f n is the identity function.
For the uniqueness statement, we first note that uniqueness is clear if A = C(X)

for some compact Hausdorff space X ; this is simply the statement that a nonnegative
number has a unique nonnegative nth root. Now suppose, in a general setting, that B
and C are positive nth roots of the positive element A, with B = f (A) for f (t) = t1/n.
Note that C commutes with A since CA =CCn =CnC = AC, hence C commutes with
any polynomial in A. Now by the Weierstrass approximation theorem, f (t) = t1/n

is a uniform limit of a sequence of polynomials pn, on say [0,‖A‖]. Since B =
f (A) = limn→∞ pn(A), where each pn(A) commutes with C, we can conclude that B
commutes with C.

Consider B =C∗(B,C), the smallest unital C∗-algebra containing the self-adjoint
elements B and C. It contains A = Bn, and by the above argument is easily seen to be
commutative, so that the Gelfand transform Γ is an isometric ∗-isomorphism of B
onto C(MB). Since A,B, and C are positive elements of B, Â, B̂, and Ĉ are positive
elements of C(MB), i.e., they are nonnegative functions. We have

(B̂)n = Â = Ĉn = (Ĉ)n,

so that by our observations on uniqueness in C(MB) we must have B̂ = Ĉ, and
hence B = C as desired. ��

We can use the definition of positive element to give an ordering on the self-
adjoint elements of a unital C∗-algebra.

Definition 5.56. If A and B are self-adjoint elements of a unital C∗-algebra we say
A ≤ B if B−A is positive.

Two important facts about positive elements in a unital C∗-algebra A are as
follows:

• If A ∈ A , then A∗A ≥ 0.
• If A ∈ A and B ∈ A are positive, then so is A+B.

The converse of the first property, that any positive element of an arbitrary unital
C∗-algebra A is of the form A∗A for some A ∈A is a consequence of the n = 2 case
of Theorem 5.55. The second property shows that “≤” is a transitive relation on the
self-adjoint elements of a unital C∗-algebra. It, together with the obvious result that
A ∈ A+ and t ≥ 0 implies tA ∈ A+, say that A+ forms a “cone” in A . While we
will not prove either of the two properties above in general, we will verify them in
the particular context of positive elements of B(H ).
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Proposition 5.57. Let H be a Hilbert space. We have the following:

(a) If T ∈ B(H ) satisfies 〈T h,h〉 ≥ 0 for all h ∈ H , then T is positive, i.e., a
positive element of the C∗-algebra B(H ).

(b) For any T ∈ B(H ), the operator T ∗T is positive.
(c) The sum of two positive operators in B(H ) is positive.

Proof. In part (a), the hypothesis that 〈T h,h〉 ≥ 0 for all h ∈ H implies that T is
self-adjoint (see Exercise 4.12 in Chapter 4), and so its spectrum is contained in
R. We want to show further that its spectrum is contained in [0,∞). Let t < 0 and
consider, for arbitrary h ∈ H ,

|〈(T − tI)h,h〉| = |〈T h,h〉− t‖h‖2| = 〈T h,h〉+ |t|‖h‖2 ≥ |t|‖h‖2.

Since
|t|‖h‖2 ≤ |〈(T − tI)h,h〉| ≤ ‖(T − tI)h‖‖h‖

we must have
‖(T − tI)h‖ ≥ |t|‖h‖

and thus the operator T − tI is bounded below. This says that t is not an approximate
eigenvalue of T . Since the spectrum of T is contained in the real line, and every point
of the boundary of the spectrum is an approximate eigenvalue (see Exercise 5.5), this
tells us that t is not in the spectrum of T .

Part (b) follows immediately from (a) since 〈T ∗T h,h〉 = 〈T h,T h〉 ≥ 0 for all
h ∈ H .

Finally, suppose that A and B are positive operators in B(H ). Each has a positive
square root A1/2 and B1/2, by Theorem 5.55. For any h ∈ H we have

〈(A+B)h,h〉 = 〈Ah,h〉+ 〈Bh,h〉
= 〈A1/2h,A1/2h〉+ 〈B1/2h,B1/2h〉
= ‖A1/2h‖2 +‖B1/2h‖2 ≥ 0

and by (a) we conclude that A+B is positive, as desired. ��

Further properties of “≤” are given in Exercise 5.45, including some that indicate
potential pitfalls of the notation.

5.8 Fredholm Operators

The invertible elements in B(H ) are those operators which are one-to-one and onto
the Hilbert space H . Here we will consider a related class of operators obtained by
relaxing these conditions.

Definition 5.58. A bounded linear operator T on a Hilbert space H is called Fred-
holm if
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(1) the range of T is closed,
(2) the dimension of the kernel of T is finite, and
(3) the dimension of the quotient H /TH is finite.

When T has closed range, notice that by Exercise 3.26 of Chapter 3, the dimen-
sion of H /TH is equal to the dimension of (ran T )⊥ ≡ (TH )⊥.

Every invertible operator is clearly Fredholm. A simple example of a nonin-
vertible operator that is Fredholm is given by the shift S on �2, where we have
dim (ker S) = 0 and dim(�2/S�2) = 1. When T is compact and λ �= 0, then T −λ I
is Fredholm; this follows from Exercise 4.10 in Chapter 4 and the results of Sec-
tion 4.6. This can be rephrased by saying that a compact perturbation of the identity
is a Fredholm operator, where the terminology “compact perturbation of the iden-
tity” refers to an operator of the form I −T , where T is compact.

Although our interest in these operators will be confined to the Hilbert space set-
ting, the definition of “Fredholm operator” can equally well be made in the context
of a bounded linear operator on a Banach space X (or even from one Banach space
to another): T ∈ B(X) is Fredholm if the range of T is closed, the dimension of the
kernel of T is finite, and the dimension of X/T X is finite. There is some redundancy
in this definition; T automatically has closed range if X/T X is finite-dimensional
(here we are considering the quotient X/T X simply as a vector space, and the as-
sumption is that this vector space has a finite Hamel basis); this was the content of
Exercise 3.33 in Chapter 3.

The next result, known as Atkinson’s theorem, characterizes the Fredholm opera-
tors on H as those operators which are “invertible modulo the compacts,” a concept
we introduced at the end of Section 5.3.

Theorem 5.59 (Atkinson’s Theorem). Suppose T is in B(H ) for some Hilbert
space H . The operator T is Fredholm if and only if there is a bounded operator S
in B(H ) such that ST − I and T S− I are both compact.

Proof. First suppose that T is Fredholm, so that the kernel of T is finite-dimensional,
as is (TH )⊥. The restriction of T to the closed subspace (ker T )⊥ is a one-to-one
map of (ker T )⊥ onto TH . Thus we may define S on TH to be the inverse of this
restriction:

S|TH = (T |(ker T )⊥)−1.

Define S to be 0 on (TH )⊥. On (ker T )⊥ we have ST − I = 0, and hence the dimen-
sion of the range of ST − I is finite. On TH , T S− I = 0, and thus the dimension
of the range of T S− I is finite. This shows that ST − I and T S− I are finite rank
operators, and hence compact.

Conversely, suppose that there exists S ∈ B(H ) with ST − I and T S− I both
compact. We have

(ST − I)|ker T = −I|ker T .

Since ST − I is compact, this forces the kernel of T to be finite-dimensional. Taking
the adjoint of T S− I, we see that on the kernel of T ∗, S∗T ∗ − I agrees with −I,
and since S∗T ∗ − I is compact, this forces the kernel of T ∗ to be finite-dimensional.
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The kernel of T ∗ is equal to (ran T )⊥ (Exercise 2.16 in Chapter 2). Thus we can
conclude that T is Fredholm as soon as we have shown that T has closed range,
since in this case the dimension of H /TH is equal to the dimension of (ran T )⊥.

Since ST − I is compact, Theorem 4.29 tells us that ST has closed range. By
Exercise 3.27 of Chapter 3, it follows that ST is bounded below on (ker ST )⊥, and
thus there exists c > 0 such that

‖ST h‖ ≥ c‖h‖

for all h ∈ (ker ST )⊥. From this it follows that

‖T h‖ ≥ c
‖S‖‖h‖

for all h ∈ (ker ST )⊥. The reader can now easily show, using completeness, that

{T h : h ∈ (ker ST )⊥}

is a closed subspace of H .
Now write K for the compact operator ST − I. Then ker (ST ) = ker (I + K),

where ker (I + K) is finite-dimensional by Exercise 4.10 in Chapter 4, and so
T (ker ST ) is a finite-dimensional subspace of H . Thus we have a finite-dimensional
subspace

{T h : h ∈ ker (ST )},
and a closed subspace

{T h : h ∈ ker (ST )⊥}.
We may apply Exercise 4.4 in Chapter 4 to conclude that

{T h : h ∈ ker (ST )}+{T h : h ∈ ker (ST )⊥}

is a closed subspace. Since this is obviously the range of T , we are done. ��

We can rephrase Theorem 5.59 as “T ∈ B(H ) is Fredholm if and only if T +K
is invertible in the Calkin algebra B(H )/K (H ).” As an immediate consequence
we see that the product of two Fredholm operators is Fredholm. This result has a
purely algebraic proof as well; see [41].

The terminology “Fredholm operator” recognizes the pioneering work of Erik
Fredholm. In 1903 he published a paper that, in modern language, dealt with equa-
tions of the form

f (s)−
∫ b

a
k(s, t) f (t)dt = g(s), (5.3)

where k(s, t) is in L2([a,b]× [a,b]) and f ,g are in L2[a,b]. A natural question to ask
is: For which g does a solution f exist to this equation, and when a solution exists
for a particular g, can the solutions be described? From our modern perspective we
can think of Equation (5.3) as

(I −K) f = g,
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where K is the integral operator with kernel k(s, t) as defined in Section 2.1. Further-
more, as we know from Theorem 4.16, the operator K is compact (in fact, Hilbert–
Schmidt). The extent to which solutions to Equation (5.3) are not unique is measured
by the dimension of the kernel of I −K, and the extent to which solutions (with g
being given and f being the unknown) fail to exist is measured by the dimension of
[ran (I−K)]⊥. Notice how Theorem 4.32 elaborates on this: If the dimension of the
kernel of I −K is zero, then I −K is invertible and for each g a unique solution f
exists.

5.9 Exercises

5.1. Show that a Banach algebra A with an involution satisfying

‖A∗A‖ ≥ ‖A‖2

is a C∗-algebra, meaning that equality holds in this inequality.

5.2. Suppose that A is a C∗-algebra.

(a) Show that if A has a unit, it is unique (call it I); furthermore I∗ = I and ‖I‖ = 1
(provided ‖A‖ �= 0 for some A ∈ A ).

(b) Suppose A is unital. Show that if A is invertible, so is A∗, with (A∗)−1 = (A−1)∗.
(c) Every A ∈ A can be written as A = X + iY where X and Y are self-adjoint.
(d) If A is unital and U is unitary (meaning UU∗ = U∗U = I), then ‖U‖ = 1.

5.3. Let G denote the set of invertible elements in a unital Banach algebra. Show
that the map of G into G defined by A → A−1 is continuous.

5.4. Suppose that F : Ω → A is a function defined on an open set Ω ⊆ C and
taking values in a Banach space A . Show that if f is strongly analytic in Ω , then it
is weakly analytic (as defined in Section 5.2).

5.5. Recall that for T ∈ B(H ), the operator T − λ I is invertible if and only if
T − λ I is bounded below and has dense range. So one way for λ to get into the
spectrum of T is for T −λ I to not be bounded below, meaning that there are unit
vectors hn with ‖(T − λ I)hn‖ → 0. A point λ with this property is said to be an
approximate eigenvalue of T ; the set of all approximate eigenvalues of T is called
the approximate point spectrum of T . Show

(a) Every eigenvalue of T is in the approximate point spectrum of T .
(b) The approximate point spectrum of T is a closed set (show its complement is

open).
(c) Show that if Tn is invertible for all n and Tn → T where T is not invertible, then

0 is an approximate eigenvalue of T . Hints: Explain why it suffices to show that
if the range of T is not dense, then there are unit vectors hn with ‖T hn‖ → 0.
Then assume that the range of T is not dense and find a nonzero vector h with
h ⊥ ran T (why must such an h exist?). Consider hn = T−1

n h/‖T−1
n h‖.
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(d) If λ is in the boundary of σ(T ), then show that λ is an approximate eigenvalue
for T .

(e) Extend the result of (d) to the case that T is a bounded linear operator on a
Banach space X , with “approximate eigenvalue” defined in the analogous way.

5.6. Suppose that T ∈ B(H ). Show that λ is not an approximate eigenvalue of T
if and only if T −λ I has a left inverse.

5.7. Let σap(A) denote the approximate point spectrum for an operator A ∈B(H ).

(a) Show that Π n
j=1(A − λ jI) is bounded below on H if and only if A − λ jI is

bounded below for 1 ≤ j ≤ n.
(b) Show that for any polynomial p, σap(p(A)) = p(σap(A)).

Does the analogous result, with “approximate point spectrum” replaced by “point
spectrum” hold? The point spectrum of A is {λ : ker (A−λ ) is nontrivial}, i.e., the
set of eigenvalues of A.

5.8. Suppose that A is a bounded linear operator on a Hilbert space H . Show that
if A − λ I does not have dense range in H , then λ is an eigenvalue of A∗, and
conversely, if µ is an eigenvalue of A∗, then A−µI does not have dense range. Thus
the compression spectrum of A can be described in terms of the eigenvalues of A∗.

5.9. (An Inversion Spectral Mapping Theorem.) Suppose that A is an invertible
operator in B(H ). The goal of this problem is to show that

σ(A−1) =
{

1
λ

: λ ∈ σ(A)
}

.

(a) Show that if A−λ I is not bounded below, then A−1 − 1
λ I is not bounded below,

and conversely that if A−1−µI is not bounded below, then A− 1
µ I is not bounded

below. Show that the eigenvalues of A−1 are precisely the reciprocals of the
eigenvalues of A.

(b) Show that A−λ I fails to have dense range in H if and only if A−1 − 1
λ I fails to

have dense range in H . Exercise 5.8 may be helpful here.

Conclude that

σ(A−1) =
{

1
λ

: λ ∈ σ(A)
}

.

This result holds more generally for any invertible element in a unital Banach alge-
bra; see for example, p. 204 in [8].

5.10. Consider the operator on �∞ defined by

T (x1,x2, . . .) = (λ1x1,λ2x2, . . .)

where (λ1,λ2, . . .) is in �∞. Find σp(T ), σ(T ) and show that σ(T )\σp(T ) is the
residual spectrum of T .
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5.11. Recall from Exercise 2.10 in Chapter 2 that if W is a weighted shift and λ ∈C

satisfies |λ | = 1, then λW is a weighted shift which is unitarily equivalent to W .
Show that weighted shifts have “circularly symmetric” spectra, that is, if µ ∈ σ(W )
and |λ | = 1, then λ µ ∈ σ(W ).

5.12. Recall the Banach space

C1[0,1] = { f : f is continuously differentiable on [0,1]}

with norm ‖ f‖∞ +‖ f ′‖∞.

(a) Show that under pointwise multiplication, C1[0,1] is a Banach algebra. Is it a
C∗-algebra if we define f ∗ = f ?

(b) Let g(x) = x for x ∈ [0,1]. What is the norm of g in C1[0,1]? What is the spectral
radius r(g)?

(c) Show that for each closed set E ⊆ [0,1],

JE ≡ { f ∈C1[0,1] : f (x) = 0 for x ∈ E}

is a closed, two-sided ideal in C1[0,1].
(d) Find a closed ideal in C1[0,1] which is not of the form JE as in (c).

5.13. Suppose A is a Banach algebra and J is a proper, closed ideal. Show that

(A+J )(B+J ) = AB+J

is a well-defined multiplication on A /J under which this quotient space becomes
a complex algebra.

5.14. Recall that an operator T ∈ B(X), where X is a Banach space, is an isometry
if ‖T x‖ = ‖x‖ for all x ∈ X .

(a) Show that the spectrum of an isometry T is contained in the unit circle ∂D if T
is invertible.

(b) Show that if T is an isometry but is not invertible, then its spectrum is D. Hint: By
Exercise 5.5, the boundary of the spectrum is contained in the set of approximate
eigenvalues of T .

(c) Give an example of a continuous ϕ : [0,1] → [0,1] so that the composition oper-
ator Cϕ (see Exercise 2.3 in Chapter 2) is an isometry on C[0,1] and σ(Cϕ) = D.

5.15.(a) An operator T ∈ B(H ) is said to be nilpotent if T n = 0 for some positive
integer n. Show any nilpotent operator has spectrum equal to {0}.

(b) Say T is quasinilpotent if σ(T ) = {0}. By (a), every nilpotent operator is
quasinilpotent. Show that the operator T : �2 → �2 given by

T (x1,x2, . . .) = (0,
x1

2
,

x2

4
, . . . ,

xn

2n , . . .)

is quasinilpotent.
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5.16. Consider the Volterra integral operator V acting on L2([0,1],dx) defined by

V f (x) =
∫ x

0
f (t)dt.

(a) Show that for any positive integer n,

V n+1 f (x) =
1
n!

∫ x

0
(x− t)n f (t)dt.

(b) Show that σ(V ) = {0}.

5.17. Let A be the Banach algebra C(T ) in the supremum norm, where T denotes
the unit circle ∂D. Let B be the subalgebra of C(T ) consisting of those f ∈ C(T )
for which there exist polynomials pn in z with pn converging uniformly to f on T .

(a) Show that g(z) = z is not in B (but of course it is in A ).
(b) Consider the function f (z) = z which is in both A and B. What is σA ( f )? Show

that σB( f ) = D, the closed unit disk. Observe that although σA ( f ) �= σB( f ),
the spectral radius of the element f doesn’t change in passing from A to B.

5.18. Suppose A and B are Banach algebras with common identity and B ⊆ A .
Show σA (A)⊆ σB(A) and ∂σB(A)⊆ ∂σA (A), for any A ∈B. Hint for the second
part: Since the first part implies that the interior of σA (A) is contained in the interior
of σB(A) for any A in B, argue first that it suffices to show that if λ ∈ ∂σB(A), then
λ ∈ σA (A).

5.19. Suppose that A is a C∗-algebra with unit IA , B is a C∗-algebra with unit IB
and ρ : A → B is a ∗-homomorphism with ρ(IA ) = IB . Prove the following:

(a) For every A ∈ A , σ(ρ(A)) ⊆ σ(A), and hence r(ρ(A)) ≤ r(A).
(b) For every A ∈ A , ||ρ(A)‖ ≤ ‖A‖.
(c) If ρ is a ∗-isomorphism, then ρ is an isometry.

5.20. Find the norm of the operator on B(H ) where H = C
2 which is given by

the matrix [
a b
c d

]
.

Give your answer in terms of the numbers S = |a|2 + |b|2 + |c|2 + |d|2 and D =
ad −bc.

5.21. Suppose that ‖ · ‖1 and ‖ · ‖2 are two norms on a ∗-algebra A , each of which
make A into a C∗-algebra. Show ‖ · ‖1 = ‖ · ‖2.

5.22. Show that the noncommutative unital Banach algebra Mn(C) of all n×n ma-
trices with complex entries has no nontrivial two-sided ideals. (Hints: Take any
nonzero matrix A. Show that by multiplying A on the left and right by the appro-
priate sequence of matrices you can isolate any entry of A and move it anywhere
you want. Recall that the elementary row and column operations of interchanging
two rows or two columns of A can be obtained by multiplying A by the appropriate
elementary matrix.)
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5.23. Suppose that J is a closed two-sided ideal in B(H ), for H a Hilbert space.
The goal of this problem is to show that either J = {0}, or J contains K (H ),
the ideal of compact operators on H . (Compare this with the statement in Exer-
cise 5.22.)

(a) Suppose T is a nonzero operator in J . Find vectors f0, f1 with T f0 = f1 and
f1 �= 0. Show that if g0,g1 are any pair of nonzero vectors in H , then the rank
one operator S defined by

S f =
〈 f ,g0〉g1

‖g0‖2

is in J . By Exercise 2.6 in Chapter 2, this will show that J contains all rank
1 operators. Hint: Let

A f =
〈 f ,g0〉 f0

‖g0‖2

and

B f =
〈 f , f1〉g1

‖ f1‖2

and compute BTA.
(b) Apply Exercise 4.9 of Chapter 4 to show that J contains all finite rank opera-

tors.

5.24. Let (X ,Ω ,µ) be a σ -finite measure space and suppose ϕ ∈ L∞(µ). Define Mϕ
on L2(µ) by Mϕ( f ) = ϕ f , so that Mϕ is the multiplication operator with symbol ϕ .
Recall that Mϕ is a bounded linear operator on L2(µ) with ‖Mϕ‖ = ‖ϕ‖∞.

(a) Show that Mϕ is normal, with M∗
ϕ = Mϕ .

(b) Show that ϕ → Mϕ is a ∗- homomorphism from L∞(µ) into B(L2(µ)).
(c) Show that the eigenvalues of Mϕ are the complex numbers λ for which ϕ−1({λ})

has positive measure, and that σ(Mϕ) is the essential range of ϕ . The essential
range of ϕ is defined as:

{w ∈ C : µ{x : | f (x)−w| < ε} > 0 for all ε > 0}.

(d) Show directly that any closed set in C that contains the range of ϕ must contain
the essential range of ϕ .

(e) Suppose f is a continuous function on σ(Mϕ). Identify f (Mϕ) in the continuous
functional calculus. (Hint: Make a guess, and use the uniqueness statement for
the functional calculus to prove your guess correct.)

5.25. Suppose that A is a self-adjoint operator in B(H ) for some Hilbert space H .
Show that if ker (A− tI) = {0} and A− tI has closed range for some real number t,
then the range of A− tI is H . Conclude that a self-adjoint operator has no residual
spectrum.

5.26. Suppose S is a set and τ1,τ2 are topologies on S with τ1 weaker than τ2. For an
arbitrary set A in S, how does the closure of A relative to τ1 compare to the closure
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of A relative to τ2? Is it easier for a set to be compact in the τ1-topology or the τ2-
topology? Is it easier for a sequence (or net) to converge in the τ1-topology or the
τ2-topology?

5.27. Prove Theorem 5.40 by modifying the proof of Proposition 5.32.

5.28. This problem explains why we require Y to be a vector space in defining the
Y -weak topology.

(a) Suppose that X is a vector space and ϕ1,ϕ2, . . . ,ϕn are linear maps from X into
C. Let ϕ be a linear map from X into C. Show that ϕ is in the linear span of
{ϕ1,ϕ2, . . . ,ϕn} if and only if

ker ϕ1 ∩ ker ϕ2 ∩·· ·∩ ker ϕn ⊆ ker ϕ.

(b) Suppose that Y is a vector space of linear functionals on X that separates the
points of X . Show that a linear functional ϕ on X is continuous with respect to
the Y -weak topology if and only if ϕ is in Y .

5.29. Suppose A is an infinite-dimensional Banach space and A ∗ is its dual space.

(a) Show that a neighborhood basis of 0 in the weak* topology is given by the
collection of sets

OA1,...,An ≡ {ϕ ∈ A ∗ : |ϕ(A j)| < 1,1 ≤ j ≤ n},

where n is a positive integer, and A1,A2, . . . ,An are in A . To do this, you need
to show that OA1,...,An is a weak* open set containing 0, and for any weak* open
set O containing 0, there is some positive integer n, and points A j ∈ A with
0 ∈ OA1,...,An ⊆ O .

(b) Let ϕ0 be in A ∗. In the weak* topology, a sub-basic neighborhood of ϕ0 has the
form

{ϕ ∈ A ∗ : |ϕ(A)−ϕ0(A)| < ε},
where ε > 0 and A is fixed in A . Basic neighborhoods of ϕ0 are finite intersec-
tions of sub-basic neighborhoods:

N = {ϕ ∈ A ∗ : |ϕ(A j)−ϕ0(A j)| < ε j,1 ≤ j ≤ n}

where A j ∈A . Show that these are always unbounded sets. Hint: Look at a sub-
basic neighborhood and first suppose ϕ0(A) = 0, so that the sub-basic neighbor-
hood contains {ϕ : ϕ(A) = 0}, a subspace of A ∗.

(c) Show that the open unit ball in the norm of A ∗ is not weak* open.

5.30. Let X = [0,1] and put a topology on X by declaring the open sets to be the
empty set and those subsets of X whose complement is at most countable. Consider
the set A = [0,1). Show that the closure of A is [0,1], so that in particular 1 lies in the
closure of A. Show that there is no sequence {xn} of points in [0,1) that converges
to 1.
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5.31.(a) Suppose S is a Hausdorff topological space. Show that a net in S converges
to at most one point; i.e., if xα → x and xα → y then x = y.

(b) Give a proof of the “if” direction of Theorem 5.39.

5.32. Let H be a Hilbert space with orthonormal basis {en}∞
0 and consider the set

E = {em +men : 0 ≤ m < n,n = 1,2,3, . . .}. Note that E is countable. Show that 0 is
in the weak closure of E, but there is no sequence xn ∈ E with xn → 0 weakly.

5.33. Prove the following statement used in Theorem 5.46: If X and Y are home-
omorphic compact Hausdorff spaces, then C(X) and C(Y ) are ∗-isomorphic unital
C∗-algebras in a natural way.

5.34. Let A be a unital commutative Banach algebra, and suppose A,B ∈ A . Show
that r(A + B) ≤ r(A)+ r(B) and r(AB) ≤ r(A)r(B). (Hint: Use the Gelfand trans-
form.) Show the same result holds if A is not assumed to be commutative, provided
AB = BA. Show the result fails in general (look in M2(C)).

5.35. Suppose A is a unital C∗-algebra, and A ∈ A is a normal element. Show that
A is unitary if and only if σ(A) ⊆ ∂D, the unit circle in the complex plane. Show
that A2 = A if and only if σ(A) ⊆ {0,1}.

5.36. Suppose that N is a normal operator in B(H ) for some Hilbert space H . If
λ is in C\σ(N), show that

‖(N −λ I)−1‖ = dist (σ(N),λ )−1

where dist (σ(N),λ ) is the distance from σ(N) to λ .

5.37. Let W denote the Wiener algebra. Show that the Gelfand transform Γ : W →
C(MW ) is not isometric, and indeed is not even bounded below. Thus W cannot be
made into a C∗-algebra (for example, by defining f ∗ = f ).

5.38. The “one-sided Wiener algebra” W+ is defined to be the set of all f in the
Wiener algebra W of the form

f (eiθ ) =
∞

∑
n=0

aneinθ .

(a) Show that W+ is a closed subalgebra of W .
(b) For λ in the closed unit disk D, show that ϕλ taking ∑∞

n=0 aneinθ ∈ W+ to
∑∞

n=0 anλ n is a multiplicative linear functional on W+.
(c) Show that

MW+ = {ϕλ : λ ∈ D}
and the map λ → ϕλ is a homeomorphism of D and MW+ , the latter being
equipped with the weak* topology.

(d) If f ∈ W+, describe the spectra σ+( f ) and σ( f ) of f as an element of W+ and
W , respectively.
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5.39. Consider the Banach space �1(N0) of sequences {xn}∞
n=0 in the norm

‖{xn}‖ =
∞

∑
n=0

|xn|.

For {xn} and {yn} in �1(N0), define the convolution {xn}∗{yn} to be the sequence
{zn} defined by

zn =
n

∑
k=0

xkyn−k

for n = 0,1,2, . . ..

(a) Show that �1(N0) becomes a commutative unital Banach algebra under the con-
volution product.

(b) Show that as a Banach algebra, �1(N0) is isometrically isomorphic to the one-
sided Wiener algebra W+ defined in Exercise 5.38.

(c) For 0 < a < 1, set x = {an} = (1,a,a2,a3, . . .). Find σ(x), the spectrum of x in
�1(N0).

5.40. Consider the Banach space c of convergent sequences, as defined in Exer-
cise 3.20 of Chapter 3. Define a product and involution respectively on c by

{xn} · {yn} = {xnyn}

and
{xn}∗ = {xn}.

This makes c a commutative unital C∗-algebra, with unit I = (1,1, . . .). Show that
its maximal ideal space is

Mc = {ϕk : k ∈ N}∪{ϕ∞}

where ϕk({xn}) = xk for k ∈ N and ϕ∞({xn}) = limn→∞ xn.
Note that the map k → ϕk is a homeomorphism of N onto its range in Mc, and

clearly ϕk → ϕ∞ weak* as k → ∞. Thus Mc is naturally homeomorphic to the one-
point compactification (see [33], p.183) of N.

5.41. Consider �∞ as a commutative unital C∗-algebra with product {xn} · {yn} =
{xnyn} and involution {xn}∗ = {xn}. The cluster set at infinity of x = {xn} ∈ �∞ is
the set

Cl∞(x) ≡ {λ ∈ C : for every ε > 0 and N ∈ N,

there exists n ≥ N with |xn −λ | < ε}
= {λ ∈ C : there exists a subsequence {xnk} of

{xn} with xnk → λ as k → ∞}.

Show that for any x = {xn} ∈ �∞,
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σ(x) = {xn : n ∈ N}∪Cl∞(x) = {xn : n ∈ N}.

5.42. Consider �∞ as a unital C∗-algebra as in the previous exercise. The fiber at
infinity is the subset X∞ ⊆ M�∞ defined by

X∞ = {ϕ ∈ M�∞ : ϕ(x) = lim
n→∞

xn for every x = {xn} ∈ c}.

(a) For n ∈ N, let en = (0, . . . ,0,1,0 . . .) with a 1 in the nth position and 0’s else-
where. Show that

X∞ = {ϕ ∈ M�∞ : ϕ(en) = 0 for all n ∈ N}
= {ϕ ∈ M�∞ : c0 ⊆ ker ϕ}.

(b) Suppose that for each k ∈ N, ϕk ∈ M�∞ is defined by ϕk(x) = xk for x = {xn} ∈
�∞. Show that

M�∞ = {ϕk : k ∈ N}∪X∞.

(c) With the terminology of the last exercise, argue that for any x ∈ �∞,

Cl∞(x) = {x̂(ϕ) : ϕ ∈ X∞}.

(d) Let x ∈ �∞. Show that x ∈ c if and only if x̂ is constant on X∞.
(e) Show that {ϕk : k ∈ N} is dense in M�∞ in the weak* topology.
(f) Let ϕ ∈ X∞. Show that (the assertion of (e) notwithstanding) there is no subse-

quence {ϕnk} of {ϕn} with ϕnk → ϕ weak*.

5.43. Can a Banach limit on �∞ (see Exercise 3.9) be multiplicative?

5.44. Recall that in a unital C∗-algebra A , the positive elements of A are defined
to be those self-adjoint A ∈A with σ(A)⊆ [0,∞). Denote the collection of positive
elements A+ and set A− = {A : −A ∈ A+}.

(a) Show that A+ ∩A− = {0}.
(b) Follow the outline below to show that every self-adjoint A in a C∗-algebra A

can be written in the form A = A+ −A−, where A+ and A− are both positive
elements of A and A+A− = A−A+ = 0.
Outline: Note that the identity function h(t) = t on the real line can be written
as f − g, where f (t) = max(0, t) and g(t) = −min(0, t). Observe that f ,g are
continuous nonnegative functions on the real line with f g = 0. For A self-adjoint,
set A+ = f (A) and A− = g(A) as given by the functional calculus. Check that
A+ and A− have the desired properties.

5.45. Suppose that 0 ≤ A ≤ B for self-adjoint elements A,B in a C∗ algebra.

(a) Show that B ≤ ‖B‖I. Hint: Consider C∗(B) ∼= C(σ(B)) where B corresponds to
the identity function on the spectrum of B. Use the functional calculus, with the
function f (x) = ‖B‖− x on σ(B).
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(b) Show ‖A‖ ≤ ‖B‖. Hint: Consider C∗(A) ∼= C(σ(A)) with A corresponding to
the identity function on the spectrum of A. Use the functional calculus with the
function f (x) = ‖B‖− x.

(c) Show that 0 ≤ A ≤ B need not imply A2 ≤ B2 by considering

X =
[

1 0
0 0

]

and

Y =

[ 1
2

1
2

1
2

1
2

]
.

Show 0 ≤ X ≤ X +Y . Is X2 ≤ (X +Y )2?
(d) Show that if 0 ≤ A ≤ B and A and B commute, then An ≤ Bn for every positive

integer n. More generally, show that if there are positive elements Cj, 1 ≤ j ≤ k,
with

0 ≤ A ≤C1 ≤C2 ≤ ·· · ≤Ck ≤ B

so that any two neighbors in this list commute, then An ≤ Bn for any positive
integer n.

5.46. Suppose that P and Q are orthogonal projections onto closed subspaces M and
N in H , respectively. Show that P ≥ Q if and only if N ⊆ M.

5.47. Let H be a Hilbert space. An operator T in B(H ) is said to be a contraction
if ‖T‖ ≤ 1.

(a) Show that T is a contraction if and only if I −T ∗T ≥ 0.
(b) Suppose that A and B are bounded linear operators on H with B invertible.

Show that AB−1 is a contraction if and only if A∗A ≤ B∗B.

5.48. What’s wrong with the following “proof” that for an arbitrary element B of a
unital C∗-algebra A , the element B∗B is positive: Let A = B∗B. Clearly A is self-
adjoint. Using the Gelfand transform we have

Γ (A) = Γ (B∗B) = Γ (B∗)Γ (B) = Γ (B)Γ (B) = |Γ (B)|2 ≥ 0

so that σ(A) = σ(Γ (A)) = range |Γ (B)|2 ⊆ [0,∞).



Chapter 6
The Spectral Theorem

Most students of mathematics learn quite early and most
mathematicians remember till quite late that every Hermitian
matrix (and in particular every real symmetric matrix) may be
put into diagonal form.... The spectral theorem is widely and
correctly regarded as the generalization of this assertion to
operators on Hilbert space.
P. Halmos ([15], p. 241).

The literature of operator theory has a variety of dissimilar looking statements that
get called “the spectral theorem.” At their simplest, they describe either compact
self-adjoint operators (as we did in Section 4.3) or compact normal operators on a
Hilbert space. In either of these cases, a description of the operator connected to
eigenvectors is still possible. In this chapter, we want to move to the more general
case of bounded normal operators on a Hilbert space H —operators that need not
have any eigenvectors.

6.1 Normal Operators Are Multiplication Operators

We will begin with a formulation of the spectral theorem that says that bounded
normal operators are “multiplication operators” when viewed in an appropriate way.
This will give a statement of the spectral theorem which is particularly easy to digest
and remember. Throughout this chapter we will work with separable Hilbert spaces.

To motivate what will become the statement of the spectral theorem it will be
convenient to first look at the finite-dimensional situation. Here the usual formu-
lation of the spectral theorem says that if A is a self-adjoint, or more generally a
normal, n× n matrix with complex entries, then C

n has an orthonormal basis con-
sisting of eigenvectors of A. If we denote such an orthonormal basis by {v j}n

1 and
suppose that

Av j = α jv j,

then (α1,α2, . . . ,αn) is an n-tuple of complex numbers. Think of this n-tuple as
a function ϕ in L∞(X ,µ), where X ≡ {1,2, . . . ,n}, µ is counting measure on the
subsets of X , and ϕ(k) = αk. Let W : L2(X ,µ) → H = C

n be defined by

W f = f (1)v1 + f (2)v2 + · · ·+ f (n)vn

and observe that W is a unitary map of L2(X ,µ) onto C
n. Now suppose that Mϕ is

the operator of multiplication by ϕ acting on L2(X ,µ), and that f is in L2(X ,µ).

B.D. MacCluer, Elementary Functional Analysis, DOI 10.1007/978-0-387-85529-5 6, 157
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Since ϕ(k) is by definition the eigenvalue αk for A, we have

WMϕ f = W (ϕ f )
= ϕ(1) f (1)v1 + · · ·ϕ(n) f (n)vn

= f (1)α1v1 + · · ·+ f (n)αnvn

= A( f (1)v1 + · · ·+ f (n)vn)
= AW f .

It follows that Mϕ = W−1AW. This argument can be generalized to any normal T ∈
B(H ), provided T has enough eigenvectors to form an orthonormal basis for H ;
see Exercise 6.1. The problem, of course, is that T need not have any eigenvectors.
Nevertheless, this point of view suggests we focus on the following concept.

Definition 6.1. A bounded linear operator A on a separable Hilbert space H is uni-
tarily equivalent to a multiplication if there is a σ -finite measure space (X ,µ), a
function ϕ ∈ L∞(X ,µ), and a unitary W : L2(X ,µ) → H such that

WMϕ = AW,

where Mϕ denotes the operator of multiplication by ϕ on the (necessarily separable)
Hilbert space L2(X ,µ).

In the finite-dimensional example just described, X is {1,2, . . . ,n} and µ is count-
ing measure, so that the norms on L2(X ,µ) and L∞(X ,µ) are given by

‖ f‖2 =

(
n

∑
j=1

| f ( j)|2
)1/2

and
‖ϕ‖∞ = max

1≤ j≤n
|ϕ( j)|,

respectively. The symbol of the multiplication operator here is the L∞(X) function
ϕ .

Notice that only normal operators can be unitarily equivalent to a multiplica-
tion, since all multiplication operators are normal. The spectral theorem says the
converse:

Theorem 6.2 (Spectral Theorem, Multiplication Version). Every normal opera-
tor on a separable Hilbert space is unitarily equivalent to a multiplication operator.

The goal of this section is to prove Theorem 6.2. Our presentation is influenced
by that in [2] and in [15], from which the quote that introduces this chapter is taken.
We will first prove Theorem 6.2 under an additional hypothesis, involving the notion
of cyclicity, a concept that was briefly explored in Exercise 2.22 of Chapter 2.

Definition 6.3. A vector h in H is a cyclic vector for the operator A in B(H ) if
(finite) linear combinations of the vectors in the orbit of h, namely
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{h,Ah,A2h,A3h, . . .},

are dense in H . Equivalently, h is a cyclic vector for A if

{p(A)h : p is a polynomial}

is dense in H .

As an example, note that the forward shift S on �2(N) has cyclic vector h =
(1,0,0, . . .) (among others). Not every operator has a cyclic vector (the identity op-
erator on a space of dimension greater than one is an easy example). The next ex-
ample, which is generalized in Exercise 6.2, shows how, for a diagonal matrix, an
eigenvalue of multiplicity greater than 1 prohibits cyclicity.

Example 6.4. In this example we look at the linear operator on C
3 given by the

matrix

A =

⎡
⎣1 0 0

0 1 0
0 0 2

⎤
⎦ .

Note that for any polynomial p and any vector h ∈ C
3, the first two components of

p(A)h agree. Is there a choice of h so that h is cyclic for A? Fix a column vector h =
(h1,h2,h3)t . First observe that no h j, j = 1,2,3 could be zero if h is a cyclic vector,
since the corresponding component of p(A)h would be zero for all polynomials p.
Next, the necessarily nonzero vector (h2,−h1,0)t is orthogonal to p(A)h for all p.
Thus

{p(A)h : p a polynomial}
is not dense in C

3, and we conclude that A has no cyclic vector.

One can rephrase the invariant subspace problem in terms of cyclic vectors: Since
the closure of the span of {h,Ah,A2h, . . .} is clearly an A-invariant subspace, and the
smallest closed A-invariant subspace containing a given vector h must contain the
closure of the span of its orbit under A, the question becomes whether every bounded
linear operator has a nonzero, noncyclic vector. Enflo’s construction of a Banach
space operator with no invariant subspace at its heart proceeds by constructing a
Banach space on which a simple multiplication operator has no nonzero, noncyclic
vector.

Recall that when A is a normal operator in B(H ), the C∗-algebra C∗(A) is com-
mutative, and that it is the closure of the polynomials in A and A∗. We will say that
C∗(A) has a cyclic vector h if {Bh : B ∈C∗(A)} is dense in H ; that is, if

{p(A,A∗)h : p = p(z,w) is a two-variable polynomial}

is dense in H . Note that if A has a cyclic vector, then trivially so does C∗(A), and
for self-adjoint A, A has cyclic vector h if and only if C∗(A) has cyclic vector h.

Most of the work in proving the spectral theorem will be done in verifying a
reduced form of the result, which we state next.
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Theorem 6.5. Let A be a normal operator in B(H ), where H is a separable
Hilbert space. If the C∗-algebra C∗(A) has a cyclic vector, then the operator A is
unitarily equivalent to a multiplication.

Before proceeding to the proof of Theorem 6.5 we make a few comments about
what is to be done. We will need to construct a σ -finite measure space (X ,µ) and a
unitary operator W : L2(X ,µ) → H such that W−1AW is a multiplication operator
on L2(X ,µ). Are there any likely candidates for this measure space, given that our
“starting data” is the normal operator A? Based on our previous experience (for ex-
ample, Theorem 5.46 and the discussion preceding it), σ(A) might be a reasonable
candidate for X . It’s less clear where the measure µ is to come from; we will see
that the Riesz–Markov theorem, as described in Exercise 3.7 in Chapter 3 and Sec-
tion A.5 of the Appendix, will produce the measure µ . Moreover, we will see that
the multiplication operator we construct in the proof of Theorem 6.5 can be taken
to be Mz, the operator of multiplication by the identity function, acting on L2(X ,µ)
for X = σ(A).

The first line of the proof of Theorem 6.5 will say “fix a cyclic vector h in H .”
The fact that h is cyclic for C∗(A) only plays a role at the very end of the proof, so
the initial steps in the proof hold for any fixed vector h in H . The reader may find
it helpful to delay including the cyclicity hypothesis until the end, where its role
becomes transparent.

Proof (Theorem 6.5). Fix a cyclic vector h in H . Let X = σ(A), the spectrum of A,
which is a compact subset of C. We know by Theorem 5.46 that there is a unique
isometric ∗-isomorphism γ between C∗(A) and C(σ(A)) sending A to z, the identity
function on σ(A). Properties of this ∗-isomorphism are indicated below; here p is a
polynomial in two variables and f ,g denote arbitrary functions in C(σ(A)).

C∗(A)
γ−→←−γ−1

C(σ(A))

I ←−−→ 1

A ←−−→ z

A∗ ←−−→ z

p(A,A∗) ←−−→ p(z,z)

f (A) ←−−→ f

f (A)∗ ←−−→ f

f (A)g(A) ←−−→ f g

f (A)+g(A) ←−−→ f +g

Define Λ on C(X) = C(σ(A)) by

Λ( f ) = 〈 f (A)h,h〉,
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where f (A) is defined, as above, by the continuous functional calculus and h is
our chosen fixed vector. We claim that Λ is a bounded, positive linear functional
on C(σ(A)). Linearity follows from the fact that f (A) + g(A) = ( f + g)(A) and
(α f )(A) = α f (A) for any scalar α . Since γ is an isometry,

|Λ( f )| = |〈 f (A)h,h〉| ≤ ‖ f (A)h‖ ‖h‖ ≤ ‖ f (A)‖ ‖h‖2 = ‖ f‖∞‖h‖2,

so Λ is bounded, with norm at most ‖h‖2.
Positivity of Λ is verified as follows. A nonnegative function f in C(σ(A)) can

be written as f = g2 for some nonnegative g in C(σ(A)). For such f ,

Λ( f ) = Λ(g2) = 〈g2(A)h,h〉 = 〈g(A)g(A)h,h〉 = 〈g(A)h,g(A)h〉 = ‖g(A)h‖2 ≥ 0,

where we have used the fact that g(A) is self-adjoint in B(H ), since g is self-adjoint
(real-valued) in C(σ(A)).

Now we invoke the Riesz–Markov theorem for C(X) (see Section A.5 of the
Appendix) and conclude that the positive linear functional Λ is given by integration
against a unique positive finite Borel measure µ on X = σ(A):

〈 f (A)h,h〉 =
∫

σ(A)
f dµ

for all f ∈ C(σ(A)). The µ-measure of σ(A) is equal to the norm of the linear
functional Λ .

Next we want a unitary map W : L2(X ,µ) → H so that W−1AW is a multiplica-
tion operator. We will first define W on C(σ(A)), instead of all of L2(σ(A),µ). For
f continuous on σ(A), set W f = f (A)h. It is easy to check that W is linear, using
the linearity of the ∗-isomorphism γ . Moreover, for f and g continuous on σ(A),

〈W f ,Wg〉H = 〈 f (A)h,g(A)h〉H
= 〈g(A)∗ f (A)h,h〉H
= 〈(g f )(A)h,h〉H
= Λ(g f )

=
∫

σ(A)
g f dµ

= 〈 f ,g〉L2(X ,µ).

This calculation shows that W is a linear isometry of C(X), equipped with the
L2(X ,µ) norm, into H . Since C(X) is dense in L2(X ,µ), we can extend W from
C(X) to the Hilbert space L2(X ,µ) by continuity in a unique way. It is easy to check
that this extension, which we continue to denote by W , is still a linear isometry into
H . What is the range of W? Since W is an isometry, it has closed range, and thus
the range must be a closed subspace of H which contains

{ f (A)h : f ∈C(X)} = {Bh : B ∈C∗(A)}.
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Here the cyclicity hypothesis enters. By assumption, {Bh : B ∈ C∗(A)} is dense in
H , and hence W is a unitary map of L2(X ,µ) onto H .

Finally we verify that W−1AW is a multiplication operator on L2(X ,µ). We will
actually show that

W−1 f (A)W = Mf (6.1)

for all f in C(X). In particular, this shows that W−1AW = Mz, where z denotes the
identity function on X = σ(A). To verify Equation (6.1), compute, for g ∈C(X),

WMf g = W ( f g) = ( f g)(A)h = f (A)g(A)h = f (A)Wg,

so that WMf = f (A)W on the dense subset C(X) in L2(X ,µ), and thus also on all
of L2(X ,µ). This completes the proof. ��

We next want to see how to remove the cyclicity hypothesis from Theorem 6.5.
Very roughly, the idea is that if C∗(A) doesn’t have a cyclic vector, we may write
H as a direct sum of subspaces Hn, each of which is invariant under A = C∗(A)
(meaning BHn ⊆ Hn for all B ∈ C∗(A)) and such that the restriction of A to each
piece does have the desired cyclicity property. We then apply the reduced form of
the spectral theorem to the pieces and use the resulting measure spaces and unitary
maps to build a unitary equivalence of A to a multiplication operator.

To carry out the details, we begin by reviewing the notion of the direct sum of
Hilbert spaces, and the direct sum of operators (see Exercises 1.31 in Chapter 1 and
2.13 in Chapter 2). Given a finite or countable collection of pairwise orthogonal
subspaces Hn of a Hilbert space, we denote the set of all convergent sums ∑hn with
hn ∈Hn by ∑⊕Hn. This is isomorphic to the set of all sequences (or k-tuples in the
finite case) (h1,h2, . . .) where hn ∈ Hn and ∑‖hn‖2 < ∞ under the map

(h1,h2, . . .) → h1 +h2 + · · · .

When convenient we will think of ∑⊕Hn as this set of sequences (or k-tuples) with
inner product

〈h,g〉 = ∑〈hn,gn〉.
Given operators An ∈ B(Hn) with

sup
n
‖An‖ < ∞

we define A on ∑⊕Hn by

A(h1,h2, . . .) = (A1h1,A2h2, . . .).

It is easy to check that A is bounded on ∑⊕Hn, and that ‖A‖ coincides with the
supremum above. We call A the direct sum of the operators An, with respect to the
decomposition ∑⊕Hn, and write
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A = A1 ⊕A2 ⊕·· · = ∑
n
⊕An.

Lemma 6.6. Let A be a normal operator on a separable Hilbert space H . There
is a finite or countable collection of nonzero, pairwise orthogonal subspaces Hn of
H satisfying

(a) H = H1 ⊕H2 ⊕·· · .
(b) Each Hn is invariant under A = C∗(A), meaning BHn ⊆ Hn for each B ∈

C∗(A); equivalently, each Hn is a reducing subspace for A.
(c) Each Hn contains a vector hn which is cyclic for An ≡ C∗(A|Hn); that is,

{Bhn : B ∈C∗(A|H n)} is dense in Hn.

Proof. We use a Zorn’s lemma argument. Consider the following family F . An
element of F is a collection of nonzero pairwise orthogonal, A -invariant closed
subspaces Hα of H , each containing a cyclic vector for C∗(A|Hα ). The collection
F is nonempty since if we pick any nonzero vector h in H , the closure of {A h}
is an A -invariant closed subspace of H with a cyclic vector. Partially order F by
inclusion. Every totally ordered chain τ in F has an upper bound in F , namely the
union of all elements in τ . By Zorn’s lemma there is a maximal element

{Hα : α ∈ I}

in F . Since H is separable and the Hα are pairwise orthogonal, the index set I is
finite or countable, and we write our maximal element as

{H1,H2, . . .}.

We are done if we can show that

H = H1 ⊕H2 ⊕·· · .

If not, the direct sum on the right is a proper closed subspace K of H , which
is easily seen to be invariant under A and A∗. Its orthogonal complement, K ⊥ is
nonzero and orthogonal to each H1, H2, . . .. Pick a nonzero vector in K ⊥, say ζ ,
and look at the cyclic subspace it generates,

H0 ≡ {A ζ}− ⊆ K ⊥.

Now {H0,H1,H2, . . .} is in F , contradicting the maximality of {H1,H2, . . .}. ��

The next lemma shows that a direct sum of a sequence (or finite collection) of
operators, each of which is unitarily equivalent to a multiplication, is itself unitarily
equivalent to a multiplication. It uses the notion of the disjoint union of an at most
countable collection of sets. This is defined as follows: Given sets Xn let

X̃n = Xn ×{n},

so that X̃ j ∩ X̃k = /0 if j �= k, and let
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X = ∪nX̃n.

The parameter n in an element (x,n) ∈ X̃n is there merely to make the sets X̃n and
X̃m disjoint, even when Xn and Xm have points in common. If, as will be our case,
we have measures µn so that (Xn,µn) is a measure space for each n, we can define a
copy µ̃n of µn on X̃n by

µ̃n(E ×{n}) ≡ µn(E)

for each µn-measurable subset E of Xn. A measurable set in X is a set F for which
F ∩ X̃n is µ̃n-measurable for each n; such sets form a σ -algebra on X . We define a
measure µ on X by

µ(F) = µ̃1(F ∩ X̃1)+ µ̃2(F ∩ X̃2)+ · · · (6.2)

for each measurable F ⊆ X . If µn is σ -finite for each n, then µ will be σ -finite also.

Lemma 6.7. If A1,A2, . . . is a finite or countable collection of operators on, respec-
tively, separable Hilbert spaces H1,H2, . . ., with each An unitarily equivalent to a
multiplication and supn ‖An‖< ∞, then ∑⊕An, acting on ∑⊕Hn, is unitarily equiv-
alent to a multiplication.

Proof. We are given the existence of σ -finite measure spaces (Xn,µn), unitary op-
erators Wn : L2(Xn,µn) → Hn, and functions fn in L∞(Xn,µn) such that

WnMfn = AnWn

for each n. Moreover, ‖An‖ = ‖Mfn‖ = ‖ fn‖∞, so that supn ‖ fn‖∞ is finite. Let X be
the disjoint union of the sets Xn, as described above, and define µ on X by Equa-
tion (6.2) for all F with the property that F ∩ X̃n is µ̃n-measurable for each n. It is
easy to verify that L2(X ,µ) is isometrically isomorphic to ∑⊕L2(Xn,µn) via the
map

g ∈ L2(X ,µ) → (g1,g2, . . .) where gn ≡ g|X̃n
.

Set W = ∑⊕Wn, where Wn is our unitary map from L2(Xn,µn) onto Hn. We leave it
to the reader to check that W is a linear surjection from ∑⊕L2(Xn,µn) ∼= L2(X ,µ)
onto ∑⊕Hn which is isometric, so that W is unitary.

Finally, define the C-valued function f on X by f (x,n) = fn(x) for x ∈ Xn. Ob-
serve that f is in L∞(X ,µ) since supn ‖ fn‖L∞(Xn,µn) < ∞. Thus Mf is a bounded linear
operator on L2(X ,µ) and we claim that

WMf =
(
∑⊕A j

)
W,

which is the statement that ∑⊕A j acting on ∑⊕H j is unitarily equivalent to a mul-
tiplication. To see this, let g ∈ L2(X ,µ) with g = (g1,g2, . . .) in ∑⊕L2(Xn,µn) and
compute

(WMf )g = W ( f g) = W ( f1g1, f2g2, . . .)
= (W1( f1g1),W2( f2g2), . . .)
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= (A1W1g1,A2W2g2, . . .)
=
(
∑⊕A j

)
Wg,

as desired. ��

We are now ready to prove Theorem 6.2, the full version of the spectral theorem,
in its “multiplication form.”

Proof (Theorem 6.2). Let A∈B(H ) be normal and set A =C∗(A). By Lemma 6.6
we may write H = ∑⊕Hn for pairwise orthogonal nonzero Hn, where A Hn ⊆
Hn and each Hn has an An-cyclic vector. By Theorem 6.5, the restriction An of A to
Hn is unitarily equivalent to a multiplication. Since ‖A‖ < ∞, supn ‖An‖ < ∞. Thus
by Lemma 6.7, ∑⊕An acting on ∑⊕Hn is unitarily equivalent to a multiplication,
so that A acting on H is also (where we identify H and ∑⊕Hn). ��

Since the measure µ constructed in the proof of Theorem 6.5 is finite, the under-
lying measure space in Theorem 6.2 is at least σ -finite. In Exercise 6.3 you are asked
to show that in fact this measure space can be taken to be finite. We have used the
separability assumption on H here; without it we would not know in Lemma 6.6
that the collection of subspaces is at most countable. There is a version of the spec-
tral theorem for nonseparable Hilbert spaces, which follows along similar lines, but
requires a bit more care.

6.2 Spectral Measures

In this section we explore the “spectral measure” version of the spectral theorem.
This is its more classical articulation, but it will require some effort to develop the
somewhat peculiar notion of spectral measures.

When A is a normal operator on B(H ), for H a separable Hilbert space, we
have used the continuous functional calculus to define f (A), for any continuous
function f on σ(A), as schematically illustrated by

B(H ) ⊇C∗(A)
γ−→←−γ−1

C(σ(A))

A ←−−→ z

f (A) ←−−→ f

Next we will show how to use the spectral theorem to extend the continuous func-
tional calculus to define g(A) to be an operator in B(H ), when g is any bounded
Borel measurable function on σ(A). By Theorem 6.2, A is unitarily equivalent to
Mϕ , the operator of multiplication by ϕ , on L2(Y,µ) for some σ -finite measure
space Y and some ϕ ∈ L∞(Y,µ). Thus there is a unitary operator W : L2(Y,µ)→H
such that A = WMϕW−1. As a provisional definition, we propose setting
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g(A) = WMg◦ϕW−1. (6.3)

(Later we will give another definition, which is independent of the unitary equiva-
lence of A to a multiplication, and see that it agrees with our provisional definition
above.) To see that our provisional definition makes sense, we have one issue to
address. Can we choose a representative for ϕ whose range is contained in σ(A)? If
so, then g◦ϕ will be defined. We know that

ess range ϕ = σ(Mϕ) = σ(A)

where “ess range ϕ” denotes the essential range of ϕ (see Exercise 5.24 in Chap-
ter 5). So our question is whether, altering ϕ on a set of µ-measure zero if necessary,
we have range ϕ ⊆ σ(A). If λ is not in the essential range of ϕ , there exists ε > 0 so
that the inverse image under ϕ of the disk centered at λ with radius ε has µ-measure
zero. The complement of σ(A) is an open set in C, and any open cover of C\σ(A)
has a countable subcover ([33], p. 191). Thus C\σ(A) may be covered by a count-
able collection of open disks whose inverse images under ϕ have µ-measure zero,
and therefore ϕ−1(C\σ(A)) has µ-measure zero. Thus we may alter ϕ on a set of
measure zero so that its range is contained in σ(A), as desired, and our proposed
definition of “g(A)” in Equation (6.3) is justified.

This definition of g(A) for g a bounded Borel measurable function on σ(A) is
called the “Borel functional calculus,” and we claim that it extends the continuous
functional calculus. To verify this, note that when g(z) = z, then Equation (6.3) gives
g(A) = A, and when g(z) = z, Equation (6.3) identifies g(A) as WMϕW−1 = A∗. Now
apply the uniqueness statement in Theorem 5.46. We leave the details to the reader.

A particular instance of the Borel functional calculus comes from choosing
g = χS, the characteristic function of a Borel subset S of σ(A). Observe that
(χS ◦ϕ)(x) = 1 if ϕ(x) is in S, and is equal to 0 otherwise. Thus

χS ◦ϕ = χϕ−1(S)

and we have
χS(A) = WMχϕ−1(S)

W−1.

What kind of operator is this? Since any characteristic function χ is an idempotent
(meaning χ2 = χ), we have

[χS(A)]2 = χS(A).

Clearly, χS(A) is self-adjoint. Recall (Exercise 2.17 in Chapter 2) that any operator T
in B(H ) that is self-adjoint and satisfies T 2 = T is an orthogonal projection (onto
its range). Thus the mapping that sends each Borel subset S of σ(A) to χS(A) asso-
ciates to each such S an orthogonal projection in B(H ). The identity I ∈ B(H )
is associated to the set σ(A), and the zero operator is associated to the empty set.
It is easy to see that orthogonal projections onto mutually orthogonal subspaces of
H are associated to disjoint sets. To continue this line of investigation further, we



6.2 Spectral Measures 167

make the following definition. Recall that by a measurable space (X ,F ) we mean
a set X together with a specific σ -algebra F of subsets of X .

Definition 6.8. Let (X ,F ) be any measurable space. A spectral measure on X is a
function E : F → B(H ), where H is a Hilbert space, satisfying the following:

(1) For each S in F , E(S) is an orthogonal projection.
(2) E( /0) = 0 and E(X) = I.
(3) If S1,S2 are in F , and S1 ∩S2 = /0, then

E(S1)H ⊥ E(S2)H .

(4) If {Sk}∞
1 is a sequence of pairwise disjoint sets from F , then for each h ∈ H

n

∑
k=1

E(Sk)h → E(∪∞
k=1Sk)h

as n → ∞.

Note that as a special case of (4), if S1∩S2 = /0, then E(S1)+E(S2) = E(S1∪S2).
Typically our interest in spectral measures will be in the case that X is C or a

subset of C, and F is the Borel σ -algebra on X . There are some useful “ordinary”
measures, defined on the σ -algebra F , which can be created from a spectral mea-
sure E; we will see this in Proposition 6.14 below.

Example 6.9. To find an easy example of a spectral measure, let (X ,F ,µ) be a
measure space and set H = L2(X ,µ). Define E : F → B(H ) by E(S) = MχS , the
operator of multiplication by the characteristic function χS, acting on L2(X ,µ); the
function E is a spectral measure on X . The reader is encouraged to check the details
verifying properties (1)–(4) in Definition 6.8.

Example 6.10. Suppose that T is a diagonal operator on �2 with diagonal sequence
{λ1,λ2, . . .}. Define E on the Borel subsets of C by setting E(S) to be the diagonal
operator with diagonal sequence {α1,α2, . . .}, where α j = 1 if λ j is in S and α j = 0
if λ j is not in S. One easily checks that E is a spectral measure.

Example 6.11. Suppose that Mϕ is a multiplication operator on L2(X ,µ), where
(X ,µ) is a measure space. The function E : F → B(L2(X ,µ)) given by

E(S) = Mχϕ−1(S)

for S a Borel subset of C is a spectral measure on C. Clearly conditions (1) and (2) of
Definition 6.8 hold. For (3) observe that if S1∩S2 = /0, then for any h1,h2 ∈ L2(X ,µ)
we have

〈E(S1)h1,E(S2)h2〉 = 〈Mχϕ−1(S1)
h1,Mχϕ−1(S2)

h2〉. (6.4)

Disjointness of S1 and S2 ensures that χϕ−1(S1)χϕ−1(S2) = 0, so that the inner product
in Equation (6.4) is zero. Property (4) in Definition 6.8 is the statement that for each
h ∈ L2(X ,µ),
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χϕ−1(∪n
1Sk)h → χϕ−1(∪∞

1 Sk)h

in L2(X ,µ) as n → ∞. This is easily verified by, say, an appeal to the dominated
convergence theorem.

Notice that if S is contained in the complement of the range of ϕ , then E(S) = 0
by definition. Sometimes one defines the support of a spectral measure on C to be
the complement of the union of all open sets S for which E(S) = 0. In this example,
the support of the spectral measure E is the essential range of ϕ , or equivalently the
spectrum of the operator Mϕ (Exercise 6.5). We may think of the spectral measure
E in this example as being defined on the Borel subsets of σ(Mϕ), and extended to
all Borel subsets of C by setting E(C) = 0 if C ⊆ C\σ(Mϕ).

Example 6.12. Suppose (X ,F ) is a measurable space and E : F → B(H ) is a
spectral measure. If K is another Hilbert space and W : H → K is unitary, then
the formula

F(S) = WE(S)W−1

defines a spectral measure F : F →B(K ). The reader is asked to verify the details
in Exercise 6.6.

Property (4) in Definition 6.8 is sometimes described by saying that

∞

∑
k=1

E(Sk) = E(∪∞
k=1Sk)

with the convergence of the sum of projections taking place in the strong operator
topology. This terminology appeared earlier, in Exercise 2.23 of Chapter 2. Recall
from that exercise that a sequence {Tn} of operators on a Hilbert space is said to
converge in the strong operator topology to an operator T if for each vector h, Tnh→
T h. The next result serves to describe the operator E(∪∞

k=1Sk) = ∑∞
1 E(Sk). Recall

that ∨Mk denotes the closed linear span of the sets Mk, and when the Mk are pairwise
orthogonal closed subspaces, ∨Mk = ∑⊕Mk (Exercise 1.33 in Chapter 1).

Lemma 6.13. Suppose that H is a Hilbert space and that {Ek}∞
k=1 is a sequence of

orthogonal projections on H with E jH ⊥ EkH for all j �= k. We have

∞

∑
k=1

Ek = E,

in the sense of strong operator convergence, where E is the projection of H onto

∞∨
1

EkH =
∞

∑
1
⊕EkH .

Proof. Let Pn = ∑n
1 Ek. We want to show that Pnh → Eh for each h ∈ H , where E

is defined as in the statement of the lemma. First suppose that h is in the subspace
∑∞

1 ⊕EkH , so that h = ∑∞
1 hk with hk ∈ EkH and ∑‖hk‖2 < ∞. Since Pnh = ∑n

1 hk,
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we have Pnh → h = Eh as n → ∞. If, on the other hand, h ⊥ EkH for all k, then
Pnh = 0 = Eh. Given any x∈H , write x = y+z where y∈∑∞

1 ⊕EkH and z⊥EkH
for all k. We have Pnx → y = Ex, as desired. ��

By this lemma, we see that in (4) of Definition 6.8, ∑∞
k=1 E(Sk) is the projection

onto ∑∞
1 ⊕E(Sk)H , and moreover, for each h ∈ H ,

‖E(∪∞
1 Sk)h‖2 =

∞

∑
1
‖E(Sk)h‖2. (6.5)

Since a spectral measure E maps disjoint sets to projections with orthogonal
ranges, it follows easily that

S1 ⊆ S2 =⇒ E(S1)H ⊆ E(S2)H .

To see this, write S2 as the disjoint union of S1 and S2\S1, so that

E(S2)H = E(S1)H ⊕E(S2\S1)H ⊇ E(S1)H .

Using this observation we see that for any two measurable sets B1 and B2,

E(B1 ∩B2) = E(B1)E(B2),

and so the operators E(B1) and E(B2) commute. The details of this statement are
left to the reader in Exercise 6.7. Since we have E(Sk)H ⊆ E(∪∞

1 S j)H for each k,
and thus

∞

∑
1
⊕E(Sk)H ⊆ E(∪∞

1 Sk)H ,

the significance of condition (4) in Definition 6.8 is to demand the reverse contain-
ment.

The property in condition (4) of Definition 6.8 is certainly reminiscent of the
defining property for a (scalar-valued) measure (i.e., countable additivity), and our
next result describes constructing ordinary (complex) measures on (X ,F ) from
spectral measures. Here we return to our general setting of an arbitrary measurable
space (X ,F ).

Proposition 6.14. Let E : F → B(H ) be a spectral measure, as in Definition 6.8.
For each h and g in H , define

µh,g(S) = 〈E(S)h,g〉 (6.6)

for S in F . This is a finite complex measure on (X ,F ) and it has total variation
‖µh,g‖ at most ‖h‖‖g‖. The measure is positive if h = g.

Proof. We first show that µh,g is countably additive. Suppose that {Sk} is a sequence
of pairwise disjoint sets in F , and let S denote their union. We have



170 6 The Spectral Theorem

µh,g(S) = 〈E(S)h,g〉 = 〈
∞

∑
1

E(Sk)h,g〉

=
∞

∑
1
〈E(Sk)h,g〉 =

∞

∑
1

µh,g(Sk).

When h = g the positivity statement is a consequence of the fact that E(S) is a
self-adjoint idempotent:

µh,h(S) = 〈E(S)h,h〉 = 〈E(S)h,E(S)h〉 ≥ 0.

To verify the statement about the total variation recall what must be done: Given
any partition of X into disjoint measurable subsets {Sk}∞

k=1, we must show that

∞

∑
1
|µh,g(Sk)| ≤ ‖h‖ ‖g‖.

Now for such a partition,

∞

∑
1
|µh,g(Sk)| =

∞

∑
1
|〈E(Sk)h,g〉|

=
∞

∑
1
|〈E(Sk)h,E(Sk)g〉|

≤
∞

∑
1
‖E(Sk)h‖ ‖E(Sk)g‖

≤
(

∞

∑
1
‖E(Sk)h‖2

)1/2( ∞

∑
1
‖E(Sk)g‖2

)1/2

= ‖E(X)h‖ ‖E(X)g‖ = ‖h‖ ‖g‖,

where we have used the Cauchy–Schwarz inequality in both H and �2, and Equa-
tion (6.5). ��

In the case of spectral measures E : F → B(H ), where F denotes the Borel
subsets of a compact set X in C, the measures µh,g of Proposition 6.14 are nec-
essarily regular measures (meaning the positive measures |µh.g| are regular). This
follows, for example, by Theorem 2.18 in [40].

Given a spectral measure E : F → B(H ), we want to define an operator which
deserves to be called ∫

f dE,

where f is a bounded measurable complex function on (X ,F ). We discuss this
heuristically first. It seems reasonable to assign to the choice f = χS the projection
E(S), so that we would have
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χS dE = E(S).

Certainly we would want our “integration” to be linear, so when f is a measurable
simple function, that is

f =
n

∑
k=1

akχSk ,

our definition should yield

∫
f dE =

n

∑
k=1

akE(Sk).

Notice that with such a choice for f , we would have〈(∫
f dE

)
h,g
〉

= 〈
n

∑
k=1

akE(Sk)h,g〉 =
n

∑
k=1

ak〈E(Sk)h,g〉

=
n

∑
k=1

akµh,g(Sk)

=
∫ ( n

∑
k=1

akχSk

)
dµh,g

=
∫

f dµh,g

for all h and g in H .
This suggests how we should proceed to formally define

∫
f dE, for any bounded

measurable f , which we do next. Fix such a function f and consider b : H ×H →
C defined by

b(h,g) ≡
∫

f dµh,g.

Since µh,g is a complex measure, we remind the reader how the integral on the right
hand side of this equation is defined. As a consequence of the Radon–Nikodym the-
orem, for a given complex measure ν on a set X there exists a measurable function
m(x) with modulus 1 so that dν = md|ν |, where |ν | is the total variation measure
of ν , and integration with respect to ν is defined to be integration with respect to
md|ν |. Thus ∫

f dµh,g =
∫

f m d|µh,g|,

and m is the Radon–Nikodym derivative of µh,g with respect to |µh,g|. Since for
each measurable set S, µh,g(S) = 〈E(S)h,g〉, we see that b is a sesquilinear form on
H ×H . Moreover, by Proposition 6.14,

|b(h,g)| ≤
∫

| f | d|µh,g| ≤ ‖ f‖X‖µh,g‖ ≤ ‖ f‖X‖h‖H ‖g‖H ,
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where ‖ f‖X denotes the supremum norm of f on X , and so b is bounded. By Theo-
rem 2.11 there exists a unique bounded operator π( f ) on H with

b(h,g) = 〈π( f )h,g〉 (6.7)

for all g and h in H , and moreover

‖π( f )‖ ≤ ‖ f‖X . (6.8)

Since we have
〈π( f )h,g〉 =

∫
f dµh,g

for all h and g, we define
∫

f dE to be the operator π( f ). In short

A =
∫

f dE

is the unique operator with

〈Ah,g〉 =
∫

f dµh,g

for all h,g in H .
It follows that ∫

χS dE = π(χS) = E(S)

for any set S ∈ F , as desired in our heuristic discussion above. More generally,
using the linearity of π as verified in Theorem 6.15 below, we see that for a simple
function

u =
n

∑
k=1

akχSk

we have ∫
udE = π(u) =

n

∑
k=1

akE(Sk).

Thus π(u) is a linear combination of projections when u is simple.
If the sets Sk are pairwise disjoint, π(u) has a particularly nice geometric form.

Disjointness guarantees that the subspaces E(Sk)H and E(Sm)H are orthogonal
for k �= m. Each subspace E(Sk)H is invariant for the operator π(u), and on this
subspace π(u) acts as the scalar ak times the identity. Writing H as the orthogonal
direct sum

H = K ⊕
n

∑
k=1

⊕E(Sk)H , (6.9)

where K is defined by this equation, we observe that π(u) acts on K as the zero
operator. Thus with regard to the decomposition (6.9) of H , π(u) acts as a block
diagonal matrix
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦0

00K

a1I1

. . .

anIn

where Ik is the identity on E(Sk)H (see Exercise 4.18 in Chapter 4 for the notion
of a matrix with operator entries).

It is worth noting that given any bounded F -measurable function f on X , π( f )
may be approximated in operator norm by operators of the form π(u) with u a
simple function as above. In view of the inequality (6.8) (and the linearity of π
established below in the proof of Theorem 6.15), it’s enough to produce from f and
an arbitrary ε > 0 a simple function u with ‖ f −u‖X < ε . The standard strategy for
doing this (variants of which are implemented in the proofs of Theorems 6.15 and
6.21 below) is to choose pairwise disjoint Borel measurable sets R1,R2, . . . ,Rq in C,
having diameters less than ε , each intersecting the range of f , whose union contains
the range of f . The sets Ak ≡ f−1(Rk), k = 1,2, . . . ,q, will form a partition of X into
nonempty pairwise disjoint measurable sets, and the simple function

u ≡
q

∑
k=1

f (xk)χAk ,

where xk is an arbitrary point in Ak, does the job:

‖π( f )−π(u)‖ = ‖π( f −u)‖ ≤ ‖ f −u‖X < ε.

In the next result, we denote the C∗-algebra of bounded F -measurable functions
on X , in the supremum norm, with pointwise operations and involution f ∗ = f , by
B(X ,F ).

Theorem 6.15. The map π : B(X ,F ) → B(H ) is a ∗-homomorphism.

Proof. We show first that π is linear. Let h and g be in H and suppose f1 and f2
are bounded measurable functions on X and α is a complex scalar. We have

〈π(α f1 + f2)h,g〉 =
∫

(α f1 + f2)dµh,g

= α
∫

f1dµh,g +
∫

f2dµh,g

= α〈π( f1)h,g〉+ 〈π( f2)h,g〉
= 〈(απ( f1)+π( f2))h,g〉.
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This shows that π(α f1 + f2) = απ( f1)+ π( f2) and thus π is linear. The fact that
π(1) = I follows from the computation

〈π(1)h,g〉 = µh,g(X) = 〈Ih,g〉.

Furthermore, for any bounded measurable f ,

〈π( f )h,g〉 =
∫

f dµh,g =
∫

f dµh,g.

But µh,g(S) = 〈g,E(S)h〉 = µg,h(S), so that

〈π( f )h,g〉 = 〈π( f )g,h〉 = 〈g,π( f )∗h〉 = 〈π( f )∗h,g〉,

which says that π( f ) = π( f )∗.
It remains to show that π is multiplicative. Let ε > 0 and partition the plane C

(using equally spaced horizontal and vertical lines) into a grid of pairwise disjoint,
equal-size semiclosed squares of diameter less than ε (to be specific, say that a
square includes its west and south edges, but not its east and north edges, and of
the corners, only includes the southwest corner). Since our functions f1 and f2 are
bounded, only finitely many of these squares will intersect either the range of f1
or the range of f2; label them R1,R2, . . .Rq, and note that their union contains the
ranges of both f1 and f2. Set Ak = f−1

1 (Rk) and Bk = f−1
2 (Rk) for each k, 1 ≤ k ≤ q,

and from the sets Ai ∩B j,1 ≤ i, j ≤ q, list only those that are nonempty, denoting
them C1,C2, . . . ,Cp. This gives a partition of X into pairwise disjoint pieces. If x,y
lie in the same piece Ck, then | f1(x)− f1(y)| < ε and | f2(x)− f2(y)| < ε . Choose a
sampling point xk in each Ck and define the simple functions

u =
p

∑
k=1

f1(xk)χCk

and

v =
p

∑
k=1

f2(xk)χCk .

Note that ‖ f1 −u‖X < ε and ‖ f2 − v‖X < ε . Since the sets Ck are pairwise disjoint,

uv =
p

∑
k=1

f1(xk) f2(xk)χCk .

We may easily compute the product π(u)π(v). Since E(Cj)H ⊥ E(Ck)H if j �= k,
we have

π(u)π(v) =

(
p

∑
j=1

f1(x j)E(Cj)

)(
p

∑
k=1

f2(xk)E(Ck)

)
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=
p

∑
j,k=1

f1(x j) f2(xk)E(Cj)E(Ck)

=
p

∑
k=1

f1(xk) f2(xk)E(Ck)

= π(uv).

Replace ε by a sequence εn → 0 and u and v by corresponding sequences un and vn.
Note that un, vn, and unvn converge uniformly to f1, f2, and f1 f2, respectively. Thus
by (6.8)

π( f1 f2) = lim
n→∞

π(unvn) = lim
n→∞

π(un)π(vn) = π( f1)π( f2)

as desired. ��

Corollary 6.16. For each f ∈ B(X ,F ), π( f ) is a normal operator in B(H ).

Proof. We have

π( f )π( f )∗ = π( f )π( f ) = π( f f ) = π( f )∗π( f ).

��

The properties of π given in Theorem 6.15 can be written in spectral integral
notation as ∫

(α f1 + f2)dE = α
∫

f1 dE +
∫

f2 dE,

∫
f dE =

(∫
f dE

)∗
,

and ∫
f1 f2 dE =

(∫
f1 dE

)(∫
f2 dE

)

for bounded F -measurable functions f , f1, and f2 and scalar α .
By a representation of a unital C∗-algebra, we mean a ∗-homomorphism of the

algebra into B(H ) for some Hilbert space H which maps I to I. Theorem 6.15
shows that π is a representation of B(X ,F ). A representation is termed faithful
if it is injective, and by Exercise 5.19 of Chapter 5, any faithful representation is
an isometry. Although we do not prove it here, it turns out that every C∗-algebra
has a representation which is an isometry. This says that every C∗-algebra “is” a
subalgebra of B(H ) for some Hilbert space H .

We next explore some consequences of the properties of the representation π
in Theorem 6.15. If (X ,F ) is a measure space and E : F → B(H ) is a spectral
measure we say that a set C ∈ F is a carrier for E if E(X\C) = 0. Since X =
C∪ (X\C) and I = E(C)+E(X\C), C is a carrier exactly when π(χC) = E(C) = I.
In Exercise 6.9 you are asked to show that if f1 and f2 are bounded measurable
functions on X with f1(x) = f2(x) for all x in some carrier C for E, then
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f1 dE =

∫
f2 dE.

As an application of these ideas, suppose X = C and E is a spectral measure on
the Borel sets of C. The identity function z is of course not bounded on C, but if E
has a bounded carrier C, so that zχC is a bounded measurable function on C, then
we may define ∫

zdE ≡
∫

zχC dE.

We claim that the right-hand side is independent of the choice of bounded carrier C
for E. If C1 and C2 are both bounded carriers, then so is C1 ∩C2. This observation
follows from noting that

C\(C1 ∩C2) = (C\C1)∪ (C\C2) = (C\C1)∪ (C1\C2)

and that C\C1 and C1\C2 are disjoint with E(C\C1) = 0 and E(C1\C2) ≤ E(C
\C2) = 0. Since zχC1 = zχC2 on the carrier C1 ∩C2, we apply Exercise 6.9 to
conclude that ∫

zχC1 dE =
∫

zχC2 dE.

Recall from our discussion following Example 6.11 that the support of spectral
measure E : F →B(H ) defined on the Borel sets F of C is the complement of the
union of all open sets U with E(U) = 0. The support K is a carrier of E. Although
carriers of E are not unique and need not be closed, the support K is unique (and of
course also closed).

Proposition 6.17. Let E be a spectral measure defined on the Borel subsets of C.
The following are equivalent:

(a) E has a bounded carrier.
(b) The support of E is compact.

The proof is left to the reader as Exercise 6.10.
The proof of the next result, which follows easily from the properties of π , is also

left to the reader, as Exercise 6.11

Proposition 6.18. Let (X ,F ) be a measure space and E : F → B(H ) a spectral
measure. If f is a bounded measurable function on X and h is in H , then

∥∥∥∥
(∫

f dE
)

h
∥∥∥∥

2

=
∫

| f |2 dµh,h.

We use Proposition 6.18 in the next result.

Proposition 6.19. Let (X ,F ),E, and f be as in Proposition 6.18. We have

ker
(∫

f dE
)

= E(S0)H ,
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where
S0 = {x ∈ X : f (x) = 0}.

Proof. Write π( f ) =
∫

f dE. By Proposition 6.18,

‖π( f )h‖2 =
∫

| f |2 dµh,h

for any h ∈ H . Thus

h ∈ ker π( f ) ⇐⇒
∫

| f |2 dµh,h = 0 ⇐⇒ µh,h(X\S0) = 0.

But

‖E(X\S0)h‖2 = 〈E(X\S0)h,E(X\S0)h〉
= 〈E(X\S0)h,h〉
= µh,h(X\S0),

so h ∈ ker π( f ) if and only if ‖E(X\S0)h‖= 0. Since I = E(X) = E(X\S0)+E(S0)
where the two summands on the right-hand side have orthogonal ranges,

‖h‖2 = ‖E(S0)h‖2 +‖E(X\S0)h‖2

and

h ∈ ker π( f ) ⇐⇒‖E(S0)h‖2 = ‖h‖2 ⇐⇒ E(S0)h = h ⇐⇒ h ∈ E(S0)H .

��

In the next result we investigate the eigenvalues of
∫

zdE.

Proposition 6.20. Let F be the Borel subsets of C and suppose E : F →B(H ) is
a spectral measure with compact support. Set A =

∫
zdE and suppose λ0 ∈ C. We

have
E({λ0}) �= 0 ⇐⇒ λ0 is an eigenvalue of A.

In this case,
ker (A−λ0I) = E({λ0})H .

Proof. Let D be a closed disk in C containing both λ0 and the support of E. Clearly
D is a carrier of E. If we set f = zχD,

A =
∫

f dE = π( f ).

By Proposition 6.19,

ker (A−λ0I) = ker π( f −λ0) = E(S0)H ,
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where S0 = {λ ∈ C : f (λ ) = λ0}. Since

E(S0) = E(S0\D)+E(S0 ∩D) = 0+E({λ0})

we see that ker (A−λ0I) = E({λ0})H and in particular, λ0 is an eigenvalue of A
if and only if E({λ0}) �= 0. ��

The next result provides the key idea for the spectral measure version of the
spectral theorem. It uses the spectral measure of Example 6.11, associated to a mul-
tiplication operator.

Theorem 6.21. Let (X ,µ) be a σ -finite measure space and let ϕ be in L∞(X ,µ).
Consider the operator Mϕ acting on L2(X ,µ) and the spectral measure

E(S) = Mχϕ−1(S)

for S a Borel set of C. Then E has compact support, and

Mϕ =
∫

zdE.

Proof. By Exercise 6.5, the support of E coincides with the essential range of ϕ ,
that is, with σ(Mϕ), which is compact. Choose a representative of ϕ whose range is
contained in the essential range of ϕ . Let ε > 0 be arbitrary. We begin by construct-
ing a finite collection of pairwise disjoint Borel sets in C, each having diameter less
than ε and intersecting the range of ϕ , and whose union is a closed set containing the
range of ϕ . Any such collection of sets will serve our purposes here, and we indicate
one possible procedure for carrying out such a construction. Take a closed square in
C which contains the range of ϕ . Cover this square with a grid of closed sub-squares
each of diameter less than ε . Let C1,C2, . . . ,Cq be those closed sub-squares which
intersect the range of ϕ . Set D1 = C1. Find the smallest value of k ≤ q, call it k1,
such that Ck1\D1 intersects the range of ϕ and set

D2 = Ck1\D1.

If no such k1 exists, the process terminates with D1. If k1, and hence D2, do exist,
notice that D1 ∩D2 = /0 and D1 ∪D2 = C1 ∪Ck1 . Next, find the smallest k2 > k1 so
that Ck2\(D1 ∪D2) intersects the range of ϕ , and define

D3 = Ck2\(D1 ∪D2).

If no such k2 exists, the process terminates with D2. If k2 (and thus D3) exist, the
sets D1,D2,D3 are pairwise disjoint and

D1 ∪D2 ∪D3 = C1 ∪Ck1 ∪Ck2 .

Continue, so that if sets D1,D2, . . . ,Dm have been constructed, at the next step we
seek the least km with q≥ km > km−1 so that Ckm\(D1∪·· ·∪Dm) intersects the range
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of ϕ; if no such km exists, the process terminates with Dm. Otherwise, the set Dm+1
is defined by

Dm+1 = Ckm\(D1 ∪·· ·∪Dm).

Eventually the process must terminate, and the resulting collection D1,D2, . . . ,Dp
are pairwise disjoint Borel sets, each having diameter less than ε , with

range ϕ ⊆ ∪p
k=1Dk ≡ K.

Since
K = D1 ∪D2 · · ·∪Dp = C1 ∪Ck1 ∪·· ·∪Ckp−1

is a union of finitely many closed squares from our original collection of Ck, K is a
closed set.

Define
Ak ≡ ϕ−1(Dk)

for k = 1,2, . . . , p and note that A1,A2, . . . ,Ap forms a partition of X into pairwise
disjoint, nonempty, µ-measurable sets. Select a sampling point xk in Ak for each k.
The simple function

u =
p

∑
k=1

ϕ(xk)χDk (6.10)

is a good approximation to the identity function on K:

‖u− z‖K ≡ sup
z∈K

|u(z)− z| ≤ ε. (6.11)

Write π for the representation associated to E, so that π( f ) =
∫

f dE. We have

π(u) =
p

∑
k=1

ϕ(xk)E(Dk)

and
E(Dk) = Mχϕ−1(Dk)

= MχAk
.

Since the Ak form a partition of X ,

p

∑
k=1

χAk = 1.

We see that for any f in L2(X ,µ)

∥∥(Mϕ −π(u)
)

f
∥∥2 =

∥∥∥∥∥ϕ

(
p

∑
k=1

χAk

)
f −
(

p

∑
k=1

ϕ(xk)E(Dk)

)
f

∥∥∥∥∥
2

=

∥∥∥∥∥
p

∑
k=1

(ϕ −ϕ(xk))χAk f

∥∥∥∥∥
2

.
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Since the sets A1,A2, . . . ,Ap partition X and |ϕ −ϕ(xk)| < ε on Ak, the above coin-
cides with

p

∑
k=1

∫
Ak

|ϕ −ϕ(xk)|2| f |2dµ ,

which is bounded above by

ε2
p

∑
k=1

∫
Ak

| f |2dµ = ε2‖ f‖2.

This says that ∥∥Mϕ −π(u)
∥∥≤ ε. (6.12)

On the other hand, the inequality (6.8) applied to f = u− z, yields

‖π(u)−π(z)‖ = ‖π(u− z)‖ ≤ ‖u− z‖K ≤ ε

since K, a closed set containing the range of ϕ , contains the support of E. Thus

‖Mϕ −π(z)‖ ≤ 2ε,

and since ε was arbitrary we conclude that

Mϕ = π(z) =
∫

zdE.

��

We look next at unitarily equivalent spectral measures.

Proposition 6.22. Let H and K be Hilbert spaces and suppose that (X ,F ) is a
measure space. Let E : F → B(H ) and F : F → B(K ) be spectral measures.
If there is a unitary operator W : H → K such that F(S) = WE(S)W−1 for all
S ∈ F , then ∫

f dF = W
(∫

f dE
)

W−1

for all bounded F -measurable functions f on X.

Proof. For any bounded measurable function f on X we let

π( f ) =
∫

f dE and ρ( f ) =
∫

f dF.

Let ε > 0 and choose, as we have done above, a simple function u on X with

‖ f −u‖X < ε.

If

u =
q

∑
k=1

ckχAk ,
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then

π(u) =
q

∑
k=1

ckE(Ak) and ρ(u) =
q

∑
k=1

ckF(Ak)

so that

Wπ(u)W−1 =
q

∑
k=1

ckWE(Ak)W−1 =
q

∑
k=1

ckF(Ak) = ρ(u).

Thus

‖Wπ( f )W−1 −ρ( f )‖ = ‖W (π( f )−π(u))W−1 +ρ(u)−ρ( f )‖
≤ ‖W (π( f )−π(u))W−1‖+‖ρ(u)−ρ( f )‖
= ‖π( f −u)‖+‖ρ( f −u)‖ ≤ 2‖ f −u‖X < 2ε.

Since ε is arbitary, ρ( f ) = Wπ( f )W−1. ��
The next result is the “spectral measure version” of the spectral theorem. The

reader is encouraged to see a concrete application of its statement by working out
Exercises 6.13 and 6.14 before proceeding to the proof of the theorem. The intuition
behind this theorem is that just as a bounded, Borel measurable function can be ap-
proximated by linear combinations of characteristic functions associated to pairwise
disjoint sets (i.e., simple functions), bounded normal operators can be approximated
by linear combinations of projections with pairwise orthogonal ranges.

Theorem 6.23 (Spectral Theorem, Spectral Measure Version). Let A be a normal
operator in B(H ), where H is a separable Hilbert space. Let F denote the Borel
subsets of σ(A). There is a unique spectral measure F : F → B(H ) with

A =
∫

zdF.

Moreover, given any continuous function f on σ(A),

f (A) =
∫

f dF,

where on the left-hand side f (A) is defined by the continuous functional calculus
(Theorem 5.46).

Proof. We address the existence part of the statement first. By Theorem 6.2 we
know that there is a σ -finite measure space (X ,ν), a unitary operator W : L2(X ,ν)→
H , and a ϕ ∈ L∞(X ,ν) so that A = WMϕW−1. Let E be the spectral measure asso-
ciated to Mϕ as in Example 6.11. We know from Theorem 6.21 that

∫
zdE = Mϕ .

By Example 6.12, F(S) ≡ WE(S)W−1 is a also spectral measure defined on the
Borel subsets of σ(A). We claim that A =

∫
zdF . This is immediate from Proposi-

tion 6.22, with f taken to be the restriction of z to σ(A). Indeed,
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∫
zdF = W

(∫
zdE

)
W−1 = WMϕW−1 = A.

This proves the existence part of the first statement of the theorem; the proof of the
uniqueness statement is outlined in Exercise 6.16.

For the second statement of the theorem, let f be continuous on σ(A) and set
π( f ) =

∫
f dF . By Theorem 6.15, p(A,A∗) =

∫
p(z,z)dF for any polynomial p in

z and z. Since f is a uniform limit on σ(A) of a sequence of such polynomials, we
have

f (A) =
∫

f dF

as desired. ��

For a normal operator A in B(H ), the expression “the spectral measure of A”
always refers to the unique measure given in Theorem 6.23. Notice that when E is
the spectral measure of A, the statement

g(A) =
∫

gdE

holds for any function g which is continuous on σ(A). The same identity, with
“g(A)” defined by the Borel functional calculus (that is, by Equation (6.3)), holds
for any bounded Borel measurable function; see Exercise 6.18.

By Proposition 6.20 we know that when H is separable and A is a normal op-
erator in B(H ) with spectral measure E, then the eigenvalues of A are precisely
those points λ0 ∈ σ(A) for which E({λ0}) is nonzero, and moreover E({λ0})H =
ker (A− λ0I). Let’s interpret this in the context of a compact normal operator T .
We know from Theorem 4.31 that in this case the nonzero points of σ(T ) are all
eigenvalues, and this set is at most countable, accumulating only at zero if infinite.
Denote these nonzero eigenvalues by λ1,λ2, . . .. Set Ek = E({λk}), where E is the
spectral measure of T . Each Ek is the projection onto ker(T −λkI). Moreover, by
Exercise 4.10 in Chapter 4, Ek is finite rank (that is, it is the projection onto a finite-
dimensional subspace), since a compact operator has finite-dimensional eigenspaces
corresponding to its nonzero eigenvalues, and EkH ⊥ EnH for k �= n.

What is ∑k λkEk? Set fk = λkχ{λk} and notice that

∑
k

fk(z) = z

on σ(T ) and that fk(T ) = λkEk. Thus

T = ∑
k

fk(T ) = ∑λkEk.

If the set of nonzero eigenvalues λk is infinite, the sum converges in the norm of
B(H ), since compactness of T implies that λk → 0 as k → ∞. Notice that with this
application of Theorem 6.23, we have recovered Theorem 4.24, in the case that T
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is compact and self-adjoint, and provided an extension of Theorem 4.24 to compact
normal operators.

6.3 Exercises

6.1. Suppose a normal operator A in B(H ) has enough eigenvectors to provide an
orthonormal basis for H :

Aek = αkek

where {ek} is an orthonormal basis for H .

(a) Check that the sequence (α1,α2,α3, . . .) is in �∞(N).
(b) Define W : �2 → H by W (λ1,λ2, . . .) = λ1e1 + λ2e2 + · · ·. Check that W is a

unitary map of �2 onto H .
(c) Define the operator B in B(�2) by B ≡ W−1AW . Identify B as a multiplication

operator on �2, where we regard �2 = L2(N) in the usual way.

6.2. Let H = C
n and let A be the operator on H given by the n×n diagonal matrix

with diagonal (a1,a2, . . . ,an).
Show that A has a cyclic vector if and only if all the diagonal entries are distinct.

Hints: If the a j are distinct, consider the vector h in C
n of all 1’s. For the converse,

mimic the argument in Example 6.4.

6.3. Show that every normal operator A acting on a separable Hilbert space is uni-
tarily equivalent to a multiplication operator on L2(X ,µ) for some finite measure
space (X ,µ). Hint: If Hn is invariant under C∗(A) and has cyclic vector hn, then we
may assume ‖hn‖ = 2−n.

6.4. A conjugation on a Hilbert space H is a conjugate linear map C : H → H
with C2 = I and 〈Cx,Cy〉 = 〈y,x〉 for all x,y in H .

(a) Show that if we fix an orthonormal basis {en} for H and set

C(∑λnen) = ∑λnen

(provided {λn} ∈ �2) then C is a conjugation.
(b) If H = L2(X ,µ) for some σ -finite measure space (X ,µ), show that C( f ) = f

is a conjugation.
(c) If C is a conjugation, an operator T ∈ B(H ) is called C-symmetric if CT ∗ =

TC. Show that the Volterra operator V f (x)=
∫ x

0 f (t)dt on L2[0,1] is C-symmetric
for C f (x) = f (1− x).

(d) If N is any normal operator in B(H ), find a conjugation C on H so that CN∗ =
NC.

6.5. Verify the assertion made in Example 6.11 about the support of E.

6.6. Provide the details in Example 6.12.
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6.7. Let E be a spectral measure on (X ,F ). Show that if S1 and S2 are in F , then
E(S1 ∩S2) = E(S1)E(S2).

6.8. Suppose that X is a topological space and F is the Borel σ -algebra on X . A
spectral measure E on (X ,F ) is said to be regular if

E(S)H = closed linear span {E(K)H : K ⊆ S is compact}

for every S in F . Show that if X = C, then any spectral measure E : F → B(H )
is necessarily regular. Hints: Clearly,

closed linear span {E(K)H : K ⊆ S is compact} ⊆ E(S)H .

For the reverse inclusion, suppose that h is a nonzero vector in H with h⊥ E(K)H
for all compact subsets K of S. Use the fact that the measure µh,h is automatically
regular ([40]) to show that h ⊥ E(S)H .

6.9. Suppose that (X ,F ) is a measure space and E : F → B(H ) is a spectral
measure. Show that if f1 and f2 are bounded measurable functions on X with f1(x) =
f2(x) for all x in some carrier C for E, then

∫
f1 dE =

∫
f2 dE.

6.10. Prove Proposition 6.17.

6.11. Prove Proposition 6.18.

6.12. Let F be the Borel subsets of C and suppose E : F → B(H ) is a spectral
measure with compact support K. Set A =

∫
zdE. Show that σ(A) = K. Hint: If

λ0 ∈ K, show that A − λ0I is not bounded below by considering unit vectors in
E(Dε(λ0))H , where Dε(λ0) is the open disk of radius ε centered at λ0.

6.13. Let T be the diagonal operator with diagonal {λ1,λ2, . . .} on �2. Consider the
spectral measure E defined in Example 6.10. Describe concretely the associated
measures µh,g, the operator π(z), and verify directly that

T =
∫

zdE.

6.14. Let A be the normal operator of multiplication by ϕ(x) = x on L2[0,1]. Let
E : [0,1] → B(L2[0,1]) be the spectral measure of A as in Theorem 6.23. Identify
E.

6.15. Suppose E is a spectral measure and suppose that E(S) commutes with an
operator T for each S in F . Show that for any f ∈ B(X ,F ),

∫
f dE commutes with

T .

6.16. Prove the uniqueness statement in Theorem 6.23. One possible outline for the
argument is as follows.
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(a) Your goal is to show that if F : F → B(H ) is the spectral measure constructed
in the proof of Theorem 6.23, and F1 : F →B(H ) is a second spectral measure
with ∫

zdF =
∫

zdF1

then F = F1. Argue that it suffices to show µ1
h,g = µh,g for all h,g ∈ H , where

µ1
h,g(S) = 〈F1(S)h,g〉 and similarly for µh,g.

(b) By polarization, argue that it suffices to show µ1
h,h = µh,h for all h ∈ H .

(c) From
∫

zdF =
∫

zdF1 we obtain
∫

zdµh,h =
∫

zdµ1
h,h, as well as the analogous

conclusion with z replacing z. We have∫
p(z,z)dµh,h =

∫
p(z,z)dµ1

h,h

for polynomials p. Now invoke the Stone–Weierstrass theorem.

6.17. Suppose A is a normal operator in B(H ) with spectrum X and let E : F →
B(H ) be its spectral measure as in Theorem 6.23.

(a) If X consists of a single point, show that A is a scalar multiple of the identity.
Conclude that every subspace of H is an invariant subspace of A in this case.

(b) Show that if X = S1∪S2 where S1 and S2 are disjoint nonempty Borel subsets of
X , then E(S1) commutes with A. Moreover, the ranges of E(S1) and E(S2) are
invariant subspaces of A with (E(S1)H )⊥ = E(S2)H .

6.18. For T any normal operator in B(H ) and g any bounded Borel measurable
function on X = σ(T ), we define g(T ) by the Borel functional calculus (Equa-
tion (6.3)). Show that g(T ) =

∫
gdE where E is the unique spectral measure in

Theorem 6.23.

6.19. Suppose that A is a normal operator in B(H ) and that λ0 is an isolated point
in σ(A). Show that λ0 is an eigenvalue of A.

6.20. Suppose that H is an infinite-dimensional separable Hilbert space and that
T ∈ B(H ) is a compact normal operator. Let f be any function in C(σ(T )). Show
that f (T ) is compact if and only if f (0) = 0.

6.21. Suppose A is normal on B(H ), so that f (A) is also normal for any f ∈
C(σ(A)). If E1 is the spectral measure of A and E2 is the spectral measure of f (A),
show that E2(S) = E1( f−1(S)) for all Borel sets S in σ( f (A)).

6.22. Let M and N be closed subspaces of a Hilbert space H . Let P and Q be,
respectively, the orthogonal projections of H onto M and N.

(a) Show that the sequence {An} of operators given by

An = PQPQ · · ·PQP
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(with n Q’s and (n+1)P’s) converges in the strong operator topology to the or-
thogonal projection of H onto M∩N. Hint: Apply the spectral measure version
of the spectral theorem to the operator PQP.

(b) The result in part (a) has been called the zig-zag theorem. Draw a picture (as
if H were the real Hilbert space R

3 and M and N were two-dimensional sub-
spaces) illustrating why.



Appendix A
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It is clear then, that we must partition not [a,b], but rather the
interval [α,β ] bounded by the upper and lower bounds of f on
[a,b]....
Henri Lebesgue, Copenhagen, 1926.

As a way to illustrate the difference between the Riemann integral and the Lebesgue
integral, consider the analogy of finding the value of a pile of coins. The “Riemann”
way is to take the coins as they appear, adding the value of each piece as you pick
it up. By contrast, in the Lebesgue method we start by sorting the coins by type —
penny, nickel, dime, . . . — and total the value as

1 ·m(A1)+5 ·m(A2)+10 ·m(A3)+ · · ·

where m(A1) is the number of pennies, m(A2) the number of nickels, and so on.1

Notice how this approach suggests an interest in sums of the form ∑s jm(A j) where
“m” is some way of measuring the “size” of sets under consideration. Thus before
we pursue a definition of the Lebesgue integral we will discuss the notion of mea-
sures.

A.1 Measures

Definition A.1. A measure space (X ,M,µ) consists of a set X , a collection M of
subsets of X , and a function µ : M → [0,∞] . The collection M is a σ -algebra, that
is, it is required to satisfy

(1) X ∈ M

(2) If A is in M, then so is its complement Ac.
(3) If An is in M for n = 1,2,3, . . ., then so is ∪∞

n=1An.

Furthermore, the set function µ must be countably additive: If {An} is a countable
collection of pairwise disjoint sets in M, then

1 This analogy was proposed by Henri Lebesgue himself in a 1926 address in Copenhagen in
which he discussed the origins of his ideas for his theory of integration. An English translation of
this address can be found in [7] or [29].

187
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µ(
∞⋃

n=1

An) =
∞

∑
n=1

µ(An).

To avoid a trivial situation, we also require the existence of some A ∈ M with
µ(A) < ∞.

The sets in M are called the (µ-)measurable sets. Conditions (2) and (3) say that
the collection of measurable sets is closed under complementation and countable
unions. The set function µ , whose domain is the collection of all measurable sets
in X , is called a measure on X . When the σ -algebra M or the measure µ is clear
from the context, they are often omitted from the notation (X ,M,µ). There are such
things as signed measures (taking values in the real line R) and complex measures
(taking values in C), but unless we say explicitly otherwise, “measure” will always
mean “positive measure” in the sense of Definition A.1. If the values of µ are re-
stricted to [0,∞) it is called a finite measure. A measure is said to be σ -finite if
the underlying set X can be written as a countable union of (measurable) sets each
having finite measure.

One can easily obtain the following as consequences of Definition A.1 and simple
set-theoretic manipulations:

(a) /0 ∈ M, and hence a finite union of measurable sets is measurable.
(b) A finite or countable intersection of measurable sets is measurable.
(c) µ( /0) = 0.
(d) If A and B are measurable sets, with A ⊆ B, then µ(A) ≤ µ(B); this says µ is

monotone.

We’ll see shortly why we want the flexibility to have M be a proper subset of
the collection P(X) of all subsets of X . Nevertheless, there are important examples
of measure spaces where M = P(X), and hence where the requirements (1)–(3) of
Definition A.1 are automatically satisfied.

Example A.2. Let X = N, the natural numbers, set M = P(N), and let µ assign
to each finite subset of N its cardinality, and to each infinite subset of N the value
∞. With the convention that a + ∞ = ∞ + a = ∞ for 0 ≤ a ≤ ∞, verification that
µ is countably additive is immediate. This is called counting measure on the posi-
tive integers. Notice that the only set with counting measure zero is the empty set.
Counting measure on N is not a finite measure, but it is σ -finite.

Example A.3. Let X be any set, let M = P(X) and fix an arbitrary point x0 in X .
Define

µ(A) =
{

1 if x0 ∈ A
0 otherwise (A.1)

for each A ⊆ X . Verification that (X ,M,µ) is a measure space is easy. The measure
µ is called the (unit) point mass measure at x0.

Our most important example will be “Lebesgue measure” on the real line R or
on an interval [a,b] ⊆ R. The underlying idea is to generalize the notion of “length”
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from intervals to more general sets. That is, we seek a measure space (R,M,m)
where m(I) = |I| = d − c whenever I is an interval with endpoints c and d. Further-
more, we want this measure m to be translation invariant, so that m(A+ x) = m(A)
for every A ∈ M, where

A+ x ≡ {a+ x : a ∈ A}
is the translate of A by x ∈ R.

Perhaps unexpectedly—and this explains why our definition of a measure space
doesn’t require that M = P(X)—it is impossible to do this if we want every subset
of R to be measurable. As soon as we ask that the measure of an interval be its
length, and require the measure to be translation invariant, there must exist non-
measurable sets.2 Fortunately, it is possible to satisfy our desired properties with
a σ -algebra L of subsets of R that is sufficiently rich to include all open sets in
R. In particular, there is a smallest σ -algebra containing all the open sets, called the
Borel σ -algebra. In addition to all open sets, the Borel σ -algebra contains all closed
sets, any countable union of closed sets, any countable intersection of open sets, and
so on. The Lebesgue measurable sets, which we discuss next, form a σ -algebra L
which (properly) contains the Borel sets.

While the details of the construction of L and of Lebesgue measure on (R,L )
will not be given here, it is easy to give an outline as to how to proceed. For more
information the reader is referred to [39], for example. Motivated by the desire to
have the measure of an interval be its length, we look at all ways of covering an
arbitrary set A ⊆ R by a countable collection of open intervals {In} and define
m∗(A) ∈ [0,∞] by

m∗(A) = inf

{
∞

∑
n=1

|In| : A ⊆
∞⋃

n=1

In

}
.

This is called the Lebesgue outer measure of A; it is defined for all subsets of R and
is translation invariant. It should also be clear the outer measure is monotone, so that
A ⊆ B implies that m∗(A) ≤ m∗(B). The outer measure of an interval is its length.

Outer measure fails to be countably additive, but there is a proper subset L of
P(R) which is a σ -algebra containing all open sets, so that the restriction of m∗ to
L is countably additive. The subsets of R that belong to L are defined to be those
sets A satisfying

m∗(T ) = m∗(T ∩A)+m∗(T ∩Ac)

for all T ⊆ R, where Ac is the complement of A in R. This definition, which is not
Lebesgue’s original one, but is rather due to Carathéodory, is perhaps not completely
transparent. We use T for “test” set; we are testing the additivity of the outer measure
of arbitrary sets against A. Some observations follow easily from Carathéodory’s
definition. For example, every set with outer measure zero is Lebesgue measurable
(i.e., it belongs to L ), and a set belongs to L if and only if its complement does.
With some effort, one shows that the measurable sets form a σ -algebra which con-
tains all intervals, and thus all open sets.

2 For an example of a nonmeasurable set, and an interesting discussion of the role of the axiom of
choice in its construction, see [4].
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When A ∈ L , we define its Lebesgue measure m(A) by

m(A) = m∗(A);

that is, Lebesgue measure is simply the restriction of outer measure to the Lebesgue
measurable sets L . Once we have defined Lebesgue measure on R, we can also
consider Lebesgue measure on any interval [a,b], by intersecting measurable sets in
R with [a,b]. We’ll reserve the notation m for Lebesgue measure. Sets of measure
zero are easy to understand: A subset of R has measure zero precisely when for
each positive ε it can be covered by an at most countable collection of intervals the
sum of whose lengths is less than ε . Countable sets have measure zero, but there are
uncountable sets of measure zero as well.3

A.2 Integration

Let’s recall how the Riemann integral of a bounded, real-valued function on the
interval [a,b] is defined. Partition the interval into subintervals by means of subdi-
vision points a = x0 < x1 < x2 < · · · < xn = b. For each such partition, we have the
upper and lower sums

Uf =
n

∑
j=1

Mj(x j − x j−1) and L f =
n

∑
j=1

m j(x j − x j−1)

where
Mj = sup

x j−1≤x≤x j

f (x) and m j = inf
x j−1≤x≤x j

f (x).

We say that f is Riemann integrable on [a,b] if

inf(Uf ) = sup(L f ),

where the infimum and supremum are taken over all partitions of [a,b] as just de-
scribed. The common value of this infimum and supremum is the Riemann integral
of f over [a,b]. In the 1820s Cauchy, who is credited with the first attempt at a rigor-
ous definition of continuity, had considered sums of a similar sort (choosing f (x j−1)
instead of m j or Mj), but he assumed a priori that f was continuous. By contrast,
Riemann as part of the work for his Habilitation degree in 1854, did not suppose
f to be continuous, and thus called attention to the question: What functions are
(Riemann) integrable? To illustrate some of the nuances of this question, Riemann
gave an example of a function whose discontinuities are dense in the the real line,
but which is nevertheless Riemann integrable on any finite interval [a,b]. It is easy
to see, however, that “too many” discontinuities can cause trouble. The example,

3 The Cantor ternary set provides an example, since its complement in [0,1] is a collection of
disjoint intervals whose lengths sum to 1.



A.2 Integration 191

due to Dirichlet, of the function defined on [0,1] by

f (x) =
{

1 if x is irrational
0 if x is rational (A.2)

has Uf = 1 and L f = 0 for each partition of [0,1], and hence f is not Riemann inte-
grable. This function is discontinuous at every point. One can show that a bounded
function on [a,b] is Riemann integrable if and only if the set of points at which it
fails to be continuous has Lebesgue measure zero.4

By the 1870s Riemann’s theory of integration had become widely known, and
had had successful application in a number of areas. Some limitations of Riemann’s
method had also come to light, but these were not yet regarded as serious deficien-
cies.

From a modern perspective we can see several problems with Riemann’s theory
of integration. Most simply stated, not enough functions are Riemann integrable.
There is an incompatibility of Riemann integration and limit processes. Every po-
tential difficulty with the statement

lim
n→∞

∫
fn =

∫ (
lim
n→∞

fn

)
, (A.3)

where the integrals are Riemann integrals, can occur. For example, one side of Equa-
tion (A.3) may fail to exist, even if the other side is perfectly well-behaved, or both
may exist, but they fail to agree. While the Lebesgue integral doesn’t remove all
problems with this interchange of limit and integral, we can give several useful con-
ditions under which Equation (A.3) holds; see Theorems A.4 and A.6 below.

From a functional analysis perspective, there is another serious deficiency of the
Riemann integral. The set of all Riemann integrable functions f : [0,1] → R in the
metric

d( f ,g) =
∫ 1

0
| f (x)−g(x)|dx

fails to be complete.5 In other words, in this important metric, there are Cauchy
sequences of Riemann integrable functions that fail to converge to a Riemann inte-
grable limit. The Lebesgue integral, introduced by Lebesgue in his doctoral thesis
of 1902, led to a resolution of this fundamental problem.

We now turn to the definition of the Lebesgue integral. Because it does not rely
on a partitioning of the domain, the definition can be just as easily made for an
arbitrary measure space (X ,M,µ) as for the particular example (R,L ,m), and we
will do so.

4 A confusion between the measure-theoretic notion of smallness (Lebesgue measure zero) and
the topological notion of smallness (nowhere dense, in the language of Section 3.2) muddied some
of the initial study of Riemann’s notion of integral. There are variants of the Cantor set which are
nowhere dense but have positive Lebesgue measure.
5 Strictly speaking, d is not a metric, since d( f ,g) = 0 does not imply that f (x) = g(x) at every
x ∈ X . This problem can be easily rectified, though; see the discussion in Section A.3 below.
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Consider first a function s defined on X and taking only finitely many distinct,
nonnegative values α1,α2, . . . ,αn. If for each j = 1,2 . . . ,n, the set

A j = s−1(α j)

is in M, we call s a nonnegative measurable simple function (a simple function in
general is one taking only finitely many distinct values). The sum

n

∑
j=1

α jµ(A j)

is a value in [0,∞] (we define α jµ(A j) = 0 if α j = 0 and µ(A j) = ∞). We call this
the Lebesgue integral of the nonnegative simple function s with respect to µ , and
denote it ∫

X
s dµ .

Furthermore, for any measurable subset E of X , define

∫
E

s dµ =
n

∑
j=1

α jµ(A j ∩E).

Notice how we need each A j to be µ-measurable for these definitions to make sense.
An arbitrary real-valued function f on X is said to be measurable if

f−1[α,β ) ≡ {x ∈ X : α ≤ f (x) < β}

is in M for each α,β ∈ R. There is a fair amount of flexibility in this definition.
For example, the half-open intervals [α,β ) can be replaced by open intervals, or
closed intervals, or arbitrary open sets, or arbitrary closed sets in R. In measure
spaces where all sets are measurable (like that of Example A.2), all functions are
measurable.

The definition of measurability shows that if we take a bounded, nonnegative,
measurable function f on X , we can approximate f by measurable simple functions
in the following natural way. Suppose that 0 ≤ f ≤ M on X and let n be a positive
integer. As in the quote of Lebesgue which introduces this chapter, we partition
[0,M] into nonoverlapping subintervals I j by

I1 =
[

0,
1
n

)
, I2 =

[
1
n
,

2
n

)

and in general

I j =
[

j−1
n

,
j
n

)

for j ≤ Mn+1. Define sn on X to be j−1
n on f−1(I j) for j = 1,2, . . . ,Mn+1, so that

sn is a measurable simple function and
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0 ≤ f (x)− sn(x) ≤
1
n

on X .

I j

�����
��� 				


f−1(I j)

y = f (x)

FIGURE A.1: Constructing the measurable simple function sn

With this approximation scheme to aid our intuition, we define the Lebesgue
integral of any measurable f : X → [0,∞] as

∫
X

f dµ = sup
{∫

X
sdµ : s is a simple measurable function and 0 ≤ s ≤ f

}
,

and say that f is Lebesgue integrable if this supremum is finite. We integrate over a
measurable subset E of X by defining

∫
E

f dµ = sup
{∫

E
sdµ : s is a simple measurable function and 0 ≤ s ≤ f

}
.

Two monotonicity properties follow readily from these definitions:

0 ≤ f ≤ g =⇒
∫

A
f dµ ≤

∫
A

gdµ

and
0 ≤ f and A ⊆ B =⇒

∫
A

f dµ ≤
∫

B
f dµ .

In a general measure space (X ,M,µ) we can always assume that every subset
of any set of µ-measure zero belongs to M (see Theorem 1.36 in [40]; we have
already observed this property for m). This implies that if a measurable function on
X is changed on a set of µ-measure zero, the result is still measurable. Moreover,
integrals are not affected by such a change. Thus many results in the theory of
Lebesgue integration are stated with the provision “almost everywhere,” meaning,
except possibly on a set of measure zero. For an example, see Theorem A.6 below.
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As a simple exercise in using this terminology, the reader is invited to show that for
a nonnegative measurable function f and A ∈ M,∫

A
f dµ = 0 if and only if f = 0 almost everywhere on A.

Lebesgue conceived of his theory of integration as an extension of Riemann’s,
and a Riemann integrable function on an interval [a,b] in R will also be Lebesgue
integrable, with equality of the integrals. The function in (A.2) provides an example
of a measurable simple function on [0,1] with Lebesgue integral equal to 1 that is
not Riemann integrable.

We state two theorems about interchange of limit and integral. Both concern
sequences of measurable functions on an arbitrary positive measure space (X ,M,µ)
and their Lebesgue integrals, and give useful conditions under which a statement in
the form of Equation (A.3) holds.

Theorem A.4 (Monotone Convergence Theorem). Suppose that { fn} is a se-
quence of measurable functions with

0 ≤ f1(x) ≤ f2(x) ≤ ·· · ≤ ∞

for all x ∈ X. If f (x) = limn→∞ fn(x) for each x ∈ X, then f is measurable, and

lim
n→∞

∫
X

fndµ =
∫

X
f dµ .

Notice that monotonicity implies that the limit function f always exists, so long as
we permit it to take values in [0,∞].

As an application of Theorem A.4, we encourage the reader to verify the details
of the following example.

Example A.5. When µ is counting measure on the set N of natural numbers,

∫
N

f dµ =
∞

∑
n=1

f (n)

for any nonnegative-valued function f on N. Any such function can be realized in a
natural way as a monotone increasing limit of simple functions.

Our next theorem on the interchange of limit and integral is normally stated for
complex-valued functions. Before giving its statement, we need to extend our def-
inition of the Lebesgue integral to this larger class. Any measurable real-valued
function f can be written as a difference f + − f− of two nonnegative measurable
functions, where f + = max( f ,0) and f− = −min(0, f ). For complex-valued func-
tions f = u+ iv, measurability is defined by requiring that the real-valued functions
u and v be measurable. When f is measurable, so is its modulus | f |. This means that
the definition of Lebesgue integration can be readily extended to certain complex-
valued functions as follows: Provided

∫
X | f |dµ < ∞, define for any µ-measurable

set A in M
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A

f dµ =
∫

A
u+dµ −

∫
A

u−dµ + i
∫

A
v+dµ − i

∫
A

v−dµ (A.4)

where f = u+ iv and u+,u−,v+, and v− are the positive and negative parts of u and
v, respectively. The restriction ∫

X
| f |dµ < ∞ (A.5)

guarantees that each of the four integrals on the right-hand side of (A.4) is finite.
Measurable complex-valued functions which satisfy (A.5) are said to be Lebesgue
integrable with respect to µ . Thus the notation

∫
X f dµ is used for nonnegative

measurable functions, where
∫

X f dµ = ∞ is possible, and for measurable, complex-
valued functions satisfying

∫
X | f |dµ < ∞ where

∫
X f dµ will be a (finite) value in

C. Lebesgue integration is linear, meaning∫
X
(α f +g)dµ = α

∫
X

f dµ +
∫

X
gdµ

for all complex scalars α and complex measurable functions f and g satisfying∫
X | f |dµ < ∞ and

∫
X |g|dµ < ∞. While this linearity is crucial, there are some sub-

tleties in proving it.

Theorem A.6 (Lebesgue Dominated Convergence Theorem). Suppose { fn} is a
sequence of complex-valued µ-measurable functions and suppose

lim
n→∞

fn(x) = f (x)

for almost every x ∈ X. If there exists a measurable function g on X with

| fn(x)| ≤ |g(x)|

for almost every x ∈ X and ∫
X
|g|dµ < ∞

then f is measurable and

lim
n→∞

∫
X

fndµ =
∫

X
f dµ .

As applications of the convergence theorems A.4 and A.6, and the linearity of the
Lebesgue integral, we can give conditions under which term-by-term integration
is allowed. This is an historically important issue, and with the Riemann integral
instead of the Lebesgue integral sufficient conditions for such integration of series
are often too restrictive.

Theorem A.7. Suppose { fn} is a sequence of µ-measurable functions.

(a) If for all n, fn : X → [0,∞], and we define



196 A Real Analysis Topics

f (x) =
∞

∑
n=1

fn(x),

then ∫
X

f dµ =
∞

∑
n=1

∫
X

fn dµ .

(b) If the fn are complex-valued and

∞

∑
n=1

∫
X
| fn|dµ < ∞,

then the series ∑∞
n=1 fn converges almost everywhere, and

∫
X

(
∞

∑
n=1

fn

)
dµ =

∞

∑
n=1

∫
X

fn dµ .

Part (a) is proved by applying the monotone convergence theorem to the sequence
of partial sums of ∑∞

n=1 fn. We allow the possibility that the positive term series
∑∞

n=1 fn(x) fails to converge for some x, in which case f (x) = ∞. Part (b) is proved
by applying the dominated convergence theorem to the sequence of partial sums,
which are dominated by g(x) ≡ ∑∞

n=1 | fn(x)|, where
∫

X gdµ < ∞ by (a).

A.3 Lp Spaces

For any measure space (X ,M,µ) and 1 ≤ p < ∞, set

Lp(X ,µ) ≡ {complex-valued measurable f :
∫

X
| f |pdµ < ∞}.

The notation Lp(X ,µ) is often shortened to Lp(X) or Lp(µ) when no confusion can
result. We also define the space L∞(X ,µ) of essentially bounded functions. We say
that a measurable function is essentially bounded if there exists M < ∞ so that

µ({x : | f (x)| > M}) = 0. (A.6)

Equivalently, f is essentially bounded if it can be changed on a set of measure zero
to produce a bounded function.

When 1 ≤ p < ∞, Lp(X ,µ) is a normed linear space if we define

‖ f‖p ≡
(∫

X
| f |pdµ

) 1
p

,

provided we agree to identify functions which agree µ-almost everywhere. If
f ∈ L∞(X ,µ), the infimum of all M > 0 that satisfy (A.6) is called the essential
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supremum of f , and is denoted ‖ f‖∞. This definition makes L∞(X ,µ) a normed
linear space.

To verify the assertions of the last paragraph there are two issues to check: Is the
sum of two Lp functions still in Lp, and does the triangle inequality hold for ‖ · ‖p?
For p = 1 and p = ∞, these hold as immediate consequences of the triangle inequal-
ity | f +g| ≤ | f |+ |g| on C. When 1 < p < ∞ we need Minkowski’s inequality: For
measurable functions f and g on X ,

(∫
X
| f +g|pdµ

) 1
p

≤
(∫

X
| f |pdµ

) 1
p

+
(∫

X
|g|pdµ

) 1
p

.

Minkowski’s inequality follows from Hölder’s inequality

∫
X
| f g|dµ ≤

(∫
X
| f |pdµ

) 1
p
(∫

X
|g|qdµ

) 1
q

(A.7)

where 1/p + 1/q = 1 (that is, p and q are conjugate indices.) Hölder’s inequality
holds for the pair p = 1,q = ∞ if we replace the second integral on the right-hand
side of (A.7) by ‖g‖∞. For the proofs of these two basic inequalities see Theorem
3.5 in [40], for example.

By virtue of Example A.5, the space �p, as defined in Example 1.5 of Chapter 1,
is the same as Lp(N,µ), where µ is counting measure on the subsets of N. This
allows us to subsume the theory of �p into the theory of Lp for general measure
spaces. Since the only set with counting measure zero is the empty set, no “almost
everywhere” conventions are needed with �p.

The next result is fundamental. It asserts the completeness of the metric space
Lp(X ,µ).

Theorem A.8 (Riesz–Fischer Theorem). For every positive measure µ and 1 ≤
p ≤ ∞, Lp(µ) is a Banach space.

As discussed in Chapter 1, this theorem goes by the name of the Riesz–Fischer
theorem, for simultaneous and independent work of Riesz and Fischer in the case
p = 2. Fischer explicitly noted that Theorem A.8 requires “the use of notions of
M. Lebesgue,” and that completeness does not hold if one considers continuous
functions on [a,b] in the L2(m) metric, since the L2-limit of a sequence of continuous
functions need not be continuous.

A.4 The Stone–Weierstrass Theorem

Recall that for X a compact Hausdorff space, C(X) denotes the continuous complex-
valued functions on X , endowed with the supremum norm

‖ f‖∞ = sup{| f (x)| : x ∈ X}.
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The real-valued functions in C(X) are denoted CR(X); this is a real vector space.
The classical Weierstrass theorem says that for any finite interval [a,b] of the

real line, the (real-valued) polynomials are dense in CR[a,b]; that is, given any f ∈
CR[a,b], there exist polynomials Pn converging uniformly to f on [a,b]. The same
result holds for C[a,b], except now the polynomials are allowed to be complex-
valued. This is a fundamental result in analysis, and it has numerous proofs.

When the interval [a,b] is replaced by a compact Hausdorff space, it is not im-
mediately clear how one might generalize Weierstrass’s result, as there is no notion
of polynomials on general spaces. However, since the (real) polynomials on an in-
terval are generated from sums, products, and real scalar products of the functions
f (x) = 1 and g(x) = x, this suggests consideration of subalgebras of C(X).

Recall that a (closed) subalgebra B of C(X) (or CR(X)) is a (closed) subspace
that is closed under multiplication. We say that a subalgebra of C(X) separates
points if given any x,y ∈ X there is an f ∈ B with f (x) �= f (y). Marshall Stone
generalized the Weierstrass theorem as follows: If B is a closed subalgebra of
CR(X) that separates points and contains the constant functions, then B = CR(X).
This is sometimes called the real Stone–Weierstrass theorem; a complexified ver-
sion requires one additional hypothesis, namely that B be closed under conjugation
(meaning that f ∈ B implies f ∈ B).

Theorem A.9 (Stone–Weierstrass Theorem). If B is a closed subalgebra of C(X)
that separates points, contains the constant functions, and is closed under conjuga-
tion, then B = C(X).

To see why the extra hypothesis is needed, take X to be the closed unit disk D in
C, and let B be the closed subalgebra of functions that are continuous in the closed
disk and analytic in its interior, so that B separates points, contains the constants,
but is not all of C(D), since, for example, f (z) = z does not belong to B.

A proof of the Stone–Weierstrass Theorem can be found in [36].

A.5 Positive Linear Functionals on C(X)

Let X be a compact Hausdorff space. The reader may find it convenient to think of
X as a compact subset of the complex plane, since our principle application is to this
setting.

A positive linear functional on C(X) is a linear functional Λ : C(X)→C with the
property that Λ( f ) ≥ 0 if f ≥ 0 on X . We don’t a priori assume that Λ is bounded,
but as a consequence of the positivity hypothesis, it will be so.

By the Borel sets in X , we mean the smallest σ -algebra that contains all open
sets in X . A measure defined on this σ -algebra is called a Borel measure, and a
function which is measurable with respect to the Borel σ -algebra is called a Borel
measurable function, or simply a Borel function. It should be clear that any function
in C(X) is a Borel function. If we start with a finite, positive, Borel measure on X
then C(X) ⊆ L1(X ,µ), and the mapping
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f →
∫

X
f dµ

will be a positive linear functional on C(X). The following result, known as the
Riesz–Markov theorem, says that all positive linear functionals arise in this way.

Theorem A.10 (Riesz–Markov Theorem). If X is a compact Hausdorff space and
Λ is a positive linear functional on C(X), then there is a unique (positive) regular
Borel measure µ on X with

Λ( f ) =
∫

X
f dµ

for all f ∈C(X).

The adjective “regular” which appears in the statement will not be defined precisely
here; see, for example [40]. Borel measures that are not regular are rather patho-
logical. When X is a compact subset of the complex plane, for example, all Borel
measures on X are regular. Notice that the norm of the linear functional Λ is µ(X).
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